本書首先介紹了集合論和拓?fù)鋵W(xué)的基礎(chǔ)知識,然后結(jié)合微積分的發(fā)展簡史與不完善之
處,從分析學(xué)的角度系統(tǒng)地介紹了實變函數(shù)的基本理論框架. 全書所列內(nèi)容均由作者多年講
義結(jié)合國際上*的《實分析》教材內(nèi)容整理而成,輔以數(shù)學(xué)史的注解,對初學(xué)者真正學(xué)懂
這門專業(yè)課十分有益.
本書采用國際上*的體系講述勒貝格積分*基本的內(nèi)容,主要介紹一維的勒貝格積分理論。對學(xué)習(xí)實變函數(shù)論所需集合論和拓?fù)鋵W(xué)知識用*小的篇幅作了系統(tǒng)講述。尤其對建立勒貝格積分所需的集合論知識用很小的篇幅作了系統(tǒng)而深入的介紹。對學(xué)習(xí)實變函數(shù)論所需拓?fù)鋵W(xué)知識采用現(xiàn)代拓?fù)鋵W(xué)的觀點(diǎn)講述。本書盡量采用拓?fù)鋵W(xué)的方式講述,使讀者能夠了解實變函數(shù)論中結(jié)果成立的拓?fù)浔尘,也便于讀者繼續(xù)深入一般測度論的學(xué)習(xí)。本書還對實變函數(shù)論中主要概念和結(jié)論的歷史背景知識作了適當(dāng)介紹。
序言
了解歷史的變化是了解這門科學(xué)的一個步驟.陳省身積分學(xué)的歷史最早可以追溯到公元前 3世紀(jì)時 , Archimedes(阿基米德 )利用圓的內(nèi)接多邊形計算圓的周長和面積.中國古代魏晉時期 (公元 3世紀(jì))劉徽獨(dú)立于西方創(chuàng)立了割圓術(shù)計算圓的周長、面積、圓周率等 .隨后南北朝時期 (公元 5世紀(jì))祖沖之發(fā)展了割圓術(shù),成功地提高了圓周率的精度.割圓術(shù)的思想其實就是現(xiàn)代分析中的無限分割.17世紀(jì) Newton(牛頓 )計算積分的流數(shù)法和 Leibniz(萊布尼茨 )的《深奧的幾何與不可分量及無限的分析》一書宣告微積分的正式誕生 . 18世紀(jì) ,微積分發(fā)展迅速,大部分積分計算方法都是這一時期給出的,其中對分析學(xué)的發(fā)展貢獻(xiàn)巨大的數(shù)學(xué)家有 Euler(歐拉 )、Bernoulli(伯努利 )兄弟、 Taylor(泰勒)、Lagrange(拉格朗日 )、Legendre(勒讓德 )等.需要特別指出的是 , 18世紀(jì)微積分發(fā)展的一個歷史性轉(zhuǎn)折是函數(shù)被放到了核心位置 ,此前數(shù)學(xué)家是以曲線作為主要研究對象的. Euler在他的《無限小分析引論》中明確宣布:數(shù)學(xué)分析是關(guān)于函數(shù)的科學(xué) .需要說明的是, Newton和 Leibniz的微積分關(guān)于無限小概念的使用比較隨意,容易引起混亂 ,當(dāng)時引起不少人的質(zhì)疑 .因此數(shù)學(xué)家們意識到分析需要嚴(yán)格化來消除這些混亂和隨意性 .分析的嚴(yán)格化工作的杰出人物有 dAlambert(達(dá)朗貝爾 )、Euler、Lagrange等人 ,其中 Euler和 Lagrange引入了形式化的觀點(diǎn),而 dAlambert則引入了極限的觀點(diǎn) .到了 19世紀(jì)初 ,分析的嚴(yán)格化已經(jīng)卓有成效 ,其中最重要的代表人物是 Cauchy(柯西 ),他給出了微積分基本定理的現(xiàn)代形式和級數(shù)的收斂性的定義等一系列重要工作 . 19世紀(jì)中期 ,為了彌補(bǔ) Cauchy等人采用的 無限地趨近 這種說法不夠嚴(yán)謹(jǐn)?shù)牟蛔?, Weierstrass(魏爾斯特拉斯 )引入了現(xiàn)在分析中采用的嚴(yán)謹(jǐn)?shù)?ε-語言 ,重新定義了極限、連續(xù)函數(shù)、導(dǎo)數(shù)等分析中的主要概念 ,使得分析達(dá)到了非常嚴(yán)密的程度 ,因此 Weierstrass被稱為現(xiàn)代分析之父.在分析的嚴(yán)格化過程中 ,數(shù)學(xué)家們遇到了極大的困難 .一些基本概念如極限、實數(shù)、級數(shù)等的研究涉及無窮多個元素構(gòu)成的集合 ,比如不連續(xù)函數(shù)的連續(xù)點(diǎn)和不連續(xù)點(diǎn)構(gòu)成的集合 .為了克服這些困難 , Dirichlet(狄利克雷)、Riemann(黎曼 )等人作了不少工作 .而 Cantor(康托爾 )則走得更遠(yuǎn) ,他在這一研究過程中系統(tǒng)發(fā)展了點(diǎn)集理論 ,開拓了一個全新的數(shù)學(xué)領(lǐng)域 集合論.集合論已經(jīng)成為現(xiàn)代數(shù)學(xué)的基礎(chǔ).19世紀(jì)末 20世紀(jì)初,分析已經(jīng)成為數(shù)學(xué)的基礎(chǔ),其內(nèi)容已經(jīng)非常豐富 ,體系也相對比較完整 .然而 ,在很多地方分析學(xué)還存在較大的局限性和不完美之處.比如: (1)一個函數(shù) Riemann可積的充要條件是什么 ?能否給出類似于連續(xù)性的 Riemann可積的充要條件 ? (2)極限與積分次序交換問題 .如果函數(shù)列不一致收斂,是否函數(shù)列的極限和積分次序一定不可交換? (3)微積分基本定理在被積函數(shù)不連續(xù)時是否成立?針對上述問題 ,在集合論的基礎(chǔ)上 Lebesgue發(fā)展了一套完整的積分理論 Lebesgue積分.和 Riemann積分相比 , Lebesgue積分具有更好的分析性質(zhì) .比如 ,可積函數(shù)類更廣 ; Lebesgue積分和極限可以交換次序的條件很弱 ;微積分基本定理成立的條件不僅限于連續(xù)函數(shù).此外,利用 Lebesgue積分可以給出函數(shù) Riemann可積的充要條件 . Lebesgue積分理論已成為許多現(xiàn)代數(shù)學(xué)分支的基礎(chǔ) ,如公理概率論、計算數(shù)學(xué)、分形幾何等;也被廣泛應(yīng)用于經(jīng)濟(jì)學(xué)、計算機(jī)科學(xué)等應(yīng)用學(xué)科當(dāng)中.本書介紹的實變函數(shù)論歷來對數(shù)學(xué)專業(yè)來說是一門較難的課程 .作者近年來一直從事實變函數(shù)論課程的教學(xué)工作 .這本《實變函數(shù)論》教材以授課講義為基礎(chǔ),結(jié)合國際上最新的《實分析》教材內(nèi)容而形成 .本書首先對學(xué)習(xí)實變函數(shù)論需要的集合論和拓?fù)鋵W(xué)基礎(chǔ)知識作了系統(tǒng)介紹.作者在教學(xué)過程中深感初學(xué)者學(xué)習(xí)實變函數(shù)論的第一個難點(diǎn)就是對無限概念的理解 ,因此在集合論部分對相關(guān)的無限集知識 ,如集合的基數(shù)、選擇公理、連續(xù)統(tǒng)假設(shè)等作了較詳細(xì)的介紹 .為了便于和拓?fù)鋵W(xué)課程銜接 ,教材中拓?fù)鋵W(xué)部分的內(nèi)容是采用拓?fù)鋵W(xué)課程的體系進(jìn)行講授 .例如在測度的講述當(dāng)中本書盡量采用拓?fù)鋵W(xué)的方式 ,結(jié)合 Solovay(索洛韋 )關(guān)于不可測集存在性的結(jié)論對 Lebesgue測度與積分的非構(gòu)造性特征作了系統(tǒng)介紹 ,力圖讓讀者理解 Lebesgue測度之所以抽象的根本原因 ,這也是實變函數(shù)學(xué)習(xí)的第二個難點(diǎn) .度過了上述兩個難點(diǎn)后相信讀者學(xué)習(xí)后續(xù)部分內(nèi)容就不會有太大困難 .在測度論部分對集合可測性的不同定義方式作了系統(tǒng)介紹 ,從而方便讀者閱讀參考書 .本書對積分的講述采用和數(shù)學(xué)分析類似的處理方式 ,即先系統(tǒng)講述有界集上的有界函數(shù)積分再過渡到一般函數(shù)積分 ,這樣做的目的是便于讀者和數(shù)學(xué)分析課程進(jìn)行比較.微分部分的講述采用的是較為簡潔的極大函數(shù)方法.本書所有內(nèi)容主要講述低維情形 ,如測度部分主要是講一維情形 .只要把低維情形學(xué)習(xí)好了 ,再推廣到高維不應(yīng)有太大困難 .本書對相關(guān)知識的發(fā)展歷史作了適當(dāng)介紹 ,我們相信相關(guān)知識歷史背景的了解對學(xué)好實變函數(shù)論是必不可少的,至少可以增強(qiáng)學(xué)習(xí)的目的性,了解前人當(dāng)時是怎么思考的.本書篇幅雖然簡短 ,但自成一體 .尤其是學(xué)習(xí)實變函數(shù)論所需要的集合論和拓?fù)鋵W(xué)知識的介紹比較完備 .限于篇幅 ,我們只講述實變函數(shù)論最基本的理論框架,許多深入的內(nèi)容,如 Lp空間、 Fourier(傅里葉)分析等完全未涉及.本書引用了書后參考文獻(xiàn)中的相關(guān)內(nèi)容和習(xí)題 ;編寫過程中函數(shù)論專家、浙江理工大學(xué)周頌平教授給出了不少建設(shè)性建議 ,他細(xì)致審閱了本書全文并作序;本書出版得到浙江理工大學(xué)教材建設(shè)項目和浙江省一流數(shù)學(xué)學(xué)科建設(shè)經(jīng)費(fèi)資助 .在此一并表示感謝 .本書以講義形式在浙江理工大學(xué)實變函數(shù)論課程中多次講述 ,因此同時感謝幾屆學(xué)生提出的寶貴意見 .最后特別感謝清華大學(xué)出版社為本書出版所付出的努力.編者2016年 12月于浙江理工大學(xué)
樊太和,博士,浙江理工大學(xué)數(shù)學(xué)科學(xué)系教授,從事拓?fù)鋵W(xué)和模糊推理方面的研究工作和數(shù)學(xué)課程的教學(xué)工作31年。發(fā)表學(xué)術(shù)論文數(shù)十篇,開設(shè)過30余門數(shù)學(xué)課程,包括實變函數(shù)論,拓?fù)鋵W(xué)等。賀平安,博士,浙江理工大學(xué)數(shù)學(xué)科學(xué)系教授,從事生命信息論方面研究工作和數(shù)學(xué)課程教學(xué)工作,發(fā)表學(xué)術(shù)論文數(shù)十篇。
目錄
第 1章集合 ................................... 1
1.1集合 ................................. 1
1.1.1集合的概念 ............. 1
1.1.2集合運(yùn)算 ................ 2
1.2基數(shù)的概念 ....................... 8
1.3可數(shù)集和不可數(shù)集 ............13
習(xí)題 1......................................20
第 2章 n維歐氏空間上的拓?fù)?.......23
2.1 n維歐氏空間上的拓?fù)涓拍?.....................................................23
2.1.1開集,內(nèi)部,拓?fù)?.....23
2.1.2閉集,閉包,導(dǎo)集 .....27
2.2子空間,乘積空間,緊集和連續(xù)映射 ..........................................31
2.2.1子空間 ...................31
2.2.2乘積空間 ...............32
2.2.3緊集 ......................33
2.2.4連續(xù)映射 ...............35
2.3開集的結(jié)構(gòu), Cantor三分集, Borel集 ......................................40
2.3.1開集的結(jié)構(gòu) ............40
2.3.2 Cantor三分集 .......43
2.3.3 Borel集 ................45
習(xí)題 2......................................50
第 3章測度論 ...............................53
3.1外測度 .............................54
3.2可測集 .............................57
3.3可測集類 .........................61
3.3.1可測集的進(jìn)一步性質(zhì) .....................................................61
3.3.2一個不可測集的例子 .....................................................63
3.3.3集合可測性的等價定義 .................................................64
3.3.4 L作為 B的完備化簡介 ..............................................66
習(xí)題 3......................................69
第 4章可測函數(shù)............................72
4.1可測函數(shù)的定義和基本性質(zhì) .....................................................72
4.1.1廣義實數(shù)集 ............72
4.1.2可測函數(shù) ...............75
4.1.3幾乎處處的概念 .....79
4.2簡單函數(shù) .........................80
4.3可測函數(shù)的極限性質(zhì)和構(gòu)造 .....................................................83
4.3.1幾乎處處收斂與近一致收斂 ...........................................84
4.3.2依測度收斂和幾乎處處收斂 ...........................................86
4.3.3可測函數(shù)的構(gòu)造 .....89習(xí)題 4......................................91
第 5章 Lebesgue積分..................94
5.1 Lebesgue積分的引入:簡單函數(shù)的積分 ....................................94
5.2測度有限集合上有界可測函數(shù)的積分 .......................................98
5.3 Lebesgue積分和 Riemann積分的關(guān)系 ................................... 103
5.4非負(fù)可測函數(shù)的積分 ....... 106
5.5一般可測函數(shù)的積分 ....... 111
5.6乘積測度與 Fubini定理 .. 118
5.6.1二維乘積測度空間 ...................................................... 118
5.6.2 Fubini定理 ..........121
5.6.3乘積集合的可測性 ...................................................... 127
習(xí)題 5.................................... 129
第 6章微分 ................................ 134
6.1積分的微分 .................... 134
6.1.1 Hardy-Littlewood極大函數(shù) ........................................ 135
6.1.2 Lebesgue微分定理 ..................................................... 138
6.2函數(shù)的微分 .................... 141
6.2.1有界變差函數(shù) ....... 141
6.2.2絕對連續(xù)函數(shù) ....... 151
6.2.3跳躍函數(shù)的導(dǎo)數(shù) ... 155
習(xí)題 6.................................... 158
附錄 A選擇公理的等價形式 .........163
習(xí)題7 ...................................... 167
附錄 B一般測度與積分理論簡介... 168
B.1一般測度空間 ................ 168
B.2積分 ............................. 170
B.3符號測度和 Randon-Nikodym定理 ....................................... 172
參考文獻(xiàn) ........................................ 175
索引 ............................................... 177