本書內(nèi)容分為三部分:第一部分是描述統(tǒng)計(jì)學(xué),共有7個單元,包括統(tǒng)計(jì)學(xué)初步、單變量數(shù)據(jù)的描述分析、兩個變量數(shù)據(jù)的描述分析、概率初步、離散概率模型、連續(xù)概率模型、抽樣分布和中心極限定理;第二部分是推斷統(tǒng)計(jì)學(xué)(數(shù)理統(tǒng)計(jì)學(xué)),共有4個單元,包括統(tǒng)計(jì)推導(dǎo)初步、一個總體的統(tǒng)計(jì)推斷、兩個總體的統(tǒng)計(jì)推斷、簡單回歸、回歸的統(tǒng)計(jì)分析;第三部分是統(tǒng)計(jì)學(xué)與數(shù)據(jù)科學(xué)專題,只有1個單元。 和同類書籍相比,本書具有如下特點(diǎn):(1)比較系統(tǒng)地闡述基礎(chǔ)統(tǒng)計(jì)學(xué)的知識,即以初階統(tǒng)計(jì)學(xué)的基本內(nèi)容為主體,又適當(dāng)?shù)丶尤氩⒔榻B中階統(tǒng)計(jì)學(xué)的部分內(nèi)容;(2)在大多數(shù)章后,我們提供課外進(jìn)一步閱讀和學(xué)習(xí)的補(bǔ)充知識,有統(tǒng)計(jì)學(xué)家簡介等;(3)緊跟當(dāng)今時(shí)代發(fā)展,給出“統(tǒng)計(jì)學(xué)與數(shù)據(jù)科學(xué)”的閱讀學(xué)習(xí)內(nèi)容。另外,在每一章前面,我們精心選取了一些著名統(tǒng)計(jì)學(xué)家或教授的名言或警句,同時(shí),特別繪制了有趣的漫畫。本書提供部分習(xí)題參考答案、教學(xué)PPT、音頻資料、部分課文參考譯文及其他輔助資料,讀者可從華信教育資源網(wǎng)www.hxedu.com.cn免費(fèi)下載,也可掃描二維碼獲取。 本書適合于各個專業(yè)對統(tǒng)計(jì)學(xué)專業(yè)英語感興趣的大學(xué)生,學(xué)習(xí)雙語統(tǒng)計(jì)學(xué)的統(tǒng)計(jì)學(xué)專業(yè)大學(xué)生,希望學(xué)習(xí)和掌握中階統(tǒng)計(jì)學(xué)的相關(guān)專業(yè)的低年級研究生,以及有關(guān)的科研人員等。
王忠玉,1963年9月生,教授,哈爾濱工業(yè)大學(xué)管理學(xué)博士,哈爾濱工業(yè)大學(xué)應(yīng)用數(shù)學(xué)碩士,現(xiàn)為吉林大學(xué)數(shù)量經(jīng)濟(jì)學(xué)博士后。從事現(xiàn)代經(jīng)濟(jì)計(jì)量學(xué)、應(yīng)用統(tǒng)計(jì)學(xué)、金融經(jīng)濟(jì)學(xué)等研究 在《管理世界》、《經(jīng)濟(jì)評論》、《中國管理科學(xué)》、《國際金融研究》、《中國統(tǒng)計(jì)》、《統(tǒng)計(jì)教育》等管理類及經(jīng)濟(jì)學(xué)刊物上發(fā)表論文20余篇,出版譯著作2本、主審1本,主持并完成省級科研項(xiàng)目1項(xiàng)! ‖F(xiàn)為黑龍江省數(shù)量與技術(shù)經(jīng)濟(jì)學(xué)會副秘書長,并且是《金融學(xué)前沿譯叢》編委會員員、《當(dāng)代世界學(xué)術(shù)名著?經(jīng)濟(jì)學(xué)系列》編委會委員、中國運(yùn)籌學(xué)會會員。
Part I Descriptive Statistics
Unit 1 Statistics 3
1.1 What is Statistics? 4
1.1.1 Meanings of Statistics 4
1.1.2 Definition of Statistics 5
1.1.3 Types of Statistics 6
1.1.4 Applications of Statistics 6
1.2 The language of Statistics 9
1.2.1 Population and Sample 9
1.2.2 Kinds of Variables 11
1.3 Measurability and Variability 14
1.4 Data Collection 16
1.4.1 The Data Collection Process 17
1.4.2 Sampling Frame and Elements 18
1.5* Single-Stage Methods 21
1.5.1 Simple Random Sample 21
1.5.2 Systematic Sample 22
1.6* Multistage Methods 25
1.7* Types of Statistical Study 27
1.8 The Process of a Statistical Study 31
Glossary 34
Reading English Materials 35
Passage 1. What is Statistics? 35
Passage 2. From Data to Foresight 35
Problems 36
Unit 2 Descriptive Analysis of Single-Variable Data 40
2.1 Graphs, Pareto Diagrams, and Stem-and-Leaf Displays 41
2.1.1 Qualitative Data 41
2.1.2 Quantitative Data 43
2.2 Frequency Distributions and Histograms 47
2.2.1 Frequency Distribution 47
2.2.2 Histograms 51
2.2.3 Cumulative Frequency Distribution and Ogives 53
2.3 Measures of Central Tendency 55
2.3.1 Finding the Mean 55
2.3.2 Finding the Median 56
2.3.3 Finding the Mode 57
2.3.4 Finding the Midrange 58
2.4 Measures of Dispersion 60
2.4.1 Sample Standard Deviation 62
2.5 Measures of Position 64
2.5.1 Quartiles 64
2.5.2 Percentiles 64
2.5.3 Other Measures of Position 66
2.6 Interpreting and Understanding Standard Deviation 70
2.6.1 The Empirical Rule and Testing for Normality 70
2.6.2 Chebyshev’s Theorem 72
Glossary 74
Problems 75
Unit 3 Descriptive Analysis of Bivariate Data 79
3.1 Bivariate Data 80
3.1.1 Two Qualitative Variables 80
3.1.2 One Qualitative and One Quantitative Variable 82
3.1.3 Two Quantitative Variables 83
3.2 Linear Correlation 85
3.2.1 Calculating the Linear Correlation Coefficient, r 86
*3.2.2 Causation and Lurking Variables 89
3.3 Linear Regression 91
3.3.1 Line of Best Fit 92
3.3.2 Making Predictions 97
Reading English Materials 99
Passage 1. The First Regression 99
Passage 2. Simpson’s Paradox 99
Problems 100
Unit 4 Introduction to Probability 104
4.1 Sample Spaces, Events and Sets 105
4.1.1 Introduction 105
4.1.2 Sample Spaces 105
4.1.3 Events 106
4.1.4 Set Theory 108
4.2 Probability Axioms and Simple Counting Problems 109
4.2.1 Probability Axioms and Simple Properties 109
4.2.2 Interpretations of Probability 111
4.2.3 Classical Probability 112
4.2.4 The Multiplication Principle 113
4.3 Permutations and Combinations 115
4.3.1 Introduction 115
4.3.2 Permutations 116
4.3.3 Combinations 118
4.3.4 The Difference Between Permutations and Combinations 120
4.4 Conditional Probability and the Multiplication Rule 122
4.4.1 Conditional Probability 122
4.4.2 The Multiplication Rule 123
4.5 Independent Events, Partitions and Bayes Theorem 124
4.5.1 Independence 124
4.5.2 Partitions 125
4.5.3 Law of Total Probability 126
4.5.4 Bayes Theorem 126
4.5.5 Bayes Theorem for Partitions 127
Reading English Materials 130
Passage 1. Probability and Odds 130
Passage 2. The Relationship between Odds and Probability 130
Passage 3. How the Odds Change across the Range of the Probability 131
Problems 132
Unit 5 Discrete Probability Models 134
5.1 Introduction, Mass Functions and Distribution Functions 135
5.1.1 Introduction 135
5.1.2 Probability Mass Functions (PMFs) 136
5.1.3 Cumulative Distribution Functions (CDFs) 137
5.2 Expectation and Variance for Discrete Random Quantities 138
5.2.1 Expectation 138
5.2.2 Variance 139
5.3 Properties of Expectation and Variance 140
5.3.1 Expectation of a Function of a Random Quantity 140
5.3.2 Expectation of a Linear Transformation 140
5.3.3 Expectation of the Sum of Two Random Quantities 141
5.3.4 Expectation of an Independent Product 141
5.3.5 Variance of an Independent Sum 142
5.4 The Binomial Distribution 142
5.4.1 Introduction 142
5.4.2 Bernoulli Random Quantities 143
5.4.3 The Binomial Distribution 143
5.4.4 Expectation and Variance of a Binomial Random Quantity 145
5.5 The Geometric Distribution 146
5.5.1 PMF 146
5.5.2 CDF 147
5.5.3 Useful Series in Probability 148
5.5.4 Expectation and Variance of Geometric Random Quantities 148
5.6 The Poisson Distribution 149
5.6.1 Poisson as the Limit of a Binomial 149
5.6.2 PMF 150
5.6.3 Expectation and Variance of Poisson 151
5.6.4 Sum of Poisson Random Quantities 152
5.6.5 The Poisson Process 152
Reading English Materials 154
Passage 1. The Founder of Modern Statistics―Karl Pearson 154
Passage 2. The Relations of Several Discrete Probability Models 154
Problems 155
Unit 6 Discrete Probability Models 158
6.1 Introduction, PDF and CDF 159
6.1.1 Introduction 159
6.1.2 The Probability Density Function 159
6.1.3 The Distribution Function 160
6.1.4 Median and Quartiles 161
6.2 Properties of Continuous Random Quantities 161
6.2.1 Expectation and variance of continuous random quantities 161
6.2.2 PDF and CDF of a Linear Transformation 162
6.3 The Uniform Distribution 163
6.4 The Exponential Distribution 165
6.4.1 Definition and Properties 165
6.4.2 Relationship with the Poisson Process 166
6.4.3 The Memoryless Property 167
6.5 The Normal Distribution 168
6.5.1 Definition 168
6.5.2 Properties 168
6.6 The Standard Normal Distribution 169
6.6.1 Properties of the Standard Normal Distribution 170
6.6.2 Finding Area to The Right of z = 0 171
6.6.3 Finding Area in The Right Tail of a Normal Curve 171
6.6.4 Finding Area to the Left of a Positive z Value 172
6.6.5 Finding Area from a Negative z to z = 0 172
6.6.6 Finding Area in the Left Tail of a Normal Curve 172
6.6.7 Finding Area from A Negative z to a Positive z 172
6.6.8 Finding Area Between two z Values of the Same Sign 173
6.6.9 Finding z-Scores Associated with a Percentile 173
6.6.10 Finding z-scores that Bound an Area 174
6.7 Applications of Normal Distributions 175
6.7.1 Probabilities and Normal Curves 175
6.7.2 Using the Normal Curve and z 176
6.8 Specific z-score 178
6.8.1 Visual Interpretation of z(a) 179
6.8.2 Determining Corresponding z Values for z (a) 179
6.8.3 Determining z-scores for Bounded Areas 180
6.9 Normal Approximation of Binomial and Poisson 181
6.9.1 Normal Approximation of the Binomial 181
6.9.2 Normal Approximation of the Poisson 182
Problems 182
Unit 7 Sampling Distributions and CLT 187
7.1 Sampling Distributions 188
7.1.1 Forming a Sampling Distribution of Means 188
7.1.2 Creating a Sampling Distribution of Sample Means 189
7.2 The Sampling Distribution of Sample Means 192
7.2.1 Central Limit Theorem 193
7.2.2 Constructing a Sampling Distribution of Sample Means 194
7.3 Application of the Sampling Distribution of Sample Means 199
7.3.1 Converting Information into z-scores 199
7.3.2 Distribution of and Increasing Individual Sample Size 200
7.4 Advanced Central Limit Theorem 202
7.4.1 Central Limit Theorem (Sample Mean) 203
7.4.2 Central Limit Theorem (Sample Sum) 203
Problems 207
Part II Inferential Statistics
Unit 8 Introduction to Statistical Inferences 210
8.1 Point Estimation and Interval Estimation 211
8.1.1 Point Estimate 211
8.1.2 Interval Estimate 212
8.2 Estimation of Mean m (s Known) 214
8.2.1 The Principle of Constructing a Confidence Interval 214
8.2.2 Applications 216
8.2.3 Sample Size and Confidence Interval 217
8.3 Introduction to Hypothesis Testing 220
8.3.1 Null Hypothesis and Alternative Hypothesis 220
8.3.2 Four Possible Outcomes in a Hypothesis Test 222
8.4 Formulating the Statistical Null and Alternative Hypotheses 226
8.4.1 Writing Null and Alternative Hypothesis in One-Tailed Situation 226
8.4.2 Writing Null and Alternative Hypothesis in Two-Tailed Situation 227
8.5 Hypothesis Test of Mean m (s Known): A Probability-Value Approach 228
8.5.1 One-Tailed Hypothesis Test Using the p-Value Approach 229
8.5.2 Two-Tailed Hypothesis Test Using the p-Value Approach 233
8.5.3 Evaluating the p-Value Approach 234
8.6 Hypothesis Test of Mean m (s Known): A Classical Approach 235
8.6.1 One-Tailed Hypothesis Test Using the Classical Approach 236
8.6.2 Two-Tailed Hypothesis Test Using the Classical Approach 239
Problems 241
Unit 9 Inferences Involving One Population 246
9.1 Inferences about the Mean m (s Unknown) 247
9.1.1 Using the t-Distribution Table 249
9.1.2 Confidence Interval Procedure 251
9.1.3 Hypothesis-Testing Procedure 252
9.2 Inferences about the Binomial Probability of Success 258
9.2.1 Confidence Interval Procedure 259
9.2.2 Determining Sample Size 261
9.2.3 Hypothesis-Testing Procedure 263
9.3 Inferences about the Variance and Standard Deviation 268
9.3.1 Critical Values of Chi-Square 269
9.3.2 Hypothesis-Testing Procedure 270
Problems 279
Unit 10 Inferences Involving Two Populations 284
10.1 Dependent and Independent Samples 285
10.2 Inferences Concerning the Mean Difference Using Two Dependent Samples 287
10.2.1 Procedures and Assumptions for Inferences Involving Paired Data 287
10.2.2 Confidence Interval Procedure 288
10.2.3 Hypothesis-Testing Procedure 290
10.3 Inferences Concerning the Difference between Means Using Two Independent
Samples 294
10.3.1 Confidence Interval Procedure 295
10.3.2 Hypothesis-Testing Procedure 297
10.4 Inferences Concerning the Difference between Proportions 301
10.4.1 Confidence Interval Procedure 303
10.4.2 Hypothesis-Testing Procedure 304
10.5 Inferences Concerning the Ratio of Variances Using Two Independent Samples 308
10.5.1 Writing for the Equality of Variances 308
10.5.2 Using the F-Distribution 309
10.5.3 One-Tailed Hypothesis Test for the Equality of Variances 310
10.5.4 Critical F-Values for One- and Two-Tailed Tests 313
Problems 315
Unit 11 An Introduction to Simple Regression 321
11.1 Regression as a Best Fitting Line 322
11.1.1 Regression as a Best Fitting Line 322
11.1.2 Errors and Residuals 324
11.2 Interpreting OLS Estimates 326
11.3 Fitted Values and R2: Measuring the Fit of a Regression Model 328
11.4 Nonlinearity in Regression 331
Reading English Materials 335
Problems 336
Part III Statistical Methods and Data Science
Unit 12 Statistics and Data Science 339
12.1 Statistics and Data Science (I) 340
12.1.1 What is Data Science 340
12.1.2 Statistics and Data Science 340
12.2 Statistics and Data Science (II) 343
12.2.1 Statistics as Part of Data Science 343
12.2.2 The Modern Statistical Analysis Process 344
12.2.3 Statistician and Data Scientist 345
12.3 Statistical Thinking 348
12.3.1 What is Statistical Thinking 348
12.3.2 The Two Cultures of Statistical Modeling 348
12.3.3 A New Research Community 350
12.4 Distinguishing Analytics, Business Intelligence, Data Science 352
12.4.1 Analytics 352
12.4.2 Business Intelligence 355
12.4.3 Data Science 356
Reading English Materials 359
Problems 361
Commonly Used Statistical Terms 362
Appendix A Commonly Used Statistical Tables 367
Appendix B Summary of Univariate Descriptive Statistics and Graphs for the Four
Level of Measurement 379
Appendix C Order of Magnitude of Data 380
References 381