本卷收錄了吳文俊在拓撲學領域發(fā)表的56篇學術(shù)論文。這些論文包含了吳文俊在示性類、示嵌類、示浸類、示痕類、能計算性與I*-量度等方面做出的一系列重要工作,蘊含了他在拓撲學領域的諸多原始思想。該卷可作為數(shù)學或數(shù)學史研究人員、教師、研究生的參考文獻,也可以作為拓撲學課程的參考書。
更多科學出版社服務,請掃碼獲取。
目錄
1.Topologie-Note Surles Produits Essentiels Symetriques des Espaces Topologiques 1
2.On the Product of Sphere Bundles and the Duality Theorem Modulo Two 4
3.Topologie-Sur L’existence D,un Champ Dlements de Contact On Dune Structure Complexe Sur Une Sphere 19
4.Topologie-Stur Les Classes Caracteristiques D,un Espace Fibre En Spheres 22
5.Topologie-Sur Le Second Obstacle D,un Champ DElements de Contact Dans Une Structure Fibree Spherique 25
6.Topologie-Sur La Structure Presque Complexe D5une Variete Differentiable Reelle de Dimension 4 28
7.Topologie-Sur La Structure Presque Complexe D,une Variete Differentiable Reelle 31
8.Topologie Algebrique-Classes Caracteristiques Et I-carres D5une Variete 33
9.Topologie Algebrique-Les i-carres Dans Une Variete Grassmannienne 36
10.Sur les Puissances de Steenrod 39
11.有限可剖分空間的新拓撲不變量 49
12.On Pontrjagin Classes 1 77
13.On Squares in Grassmannian Manifolds 91
14.“格拉斯曼”流形中的平方運算 114
15.一個H.Hopf推測的證明 136
16.論IIOHTPrHH示性類 II 145
17.論IIOHTPrHH示性類 III 170
18.論IIOHTPrHH示性類 IV 189
19.論IIOHTPrHH示性類 V 215
20.On the Realization of Complexes in Euclidean Spaces I 225
21.On the Imbedding of Polyhedrons in Euclidean Spaces 276
22.On the Realization of Complexes in Euclidean Spaces II 281
23.On the Classes of a Topological Space 307
24.On the Relations between Smith Operations and Steenrod Powers 312
25.On the Realization of Complexes in Euclidean Spaces III 321
26.On the Reduced Products and the Reduced Cyclic Products of a Space 339
27.On the Dimension of a Normal Space with Countable Basis 350
28.On the Isotopy of (7r-Maiiifolds of Dimension n in Euclidean (2n+1)-Space 355
29.On the Realization of Complexes in Euclidean Spaces II 360
30.On the Isotopy of Complexes in a Euclidean Space I 386
31.Topologie Combinatoire Et Invariants Combinatoires 414
32.On Certain Invariants of Cell-Bundles 422
33.On the Isotopy of a Finite Complex in a Euclidean Space 1 428
34.On the Isotopy of a Finite Complex in a Euclidean Space II 434
35.關于Leray的一個定理 438
36.某些實二次曲面的示性類 449
37.On the Imbedding of Orientable Manifolds in a Euclidean Space 464
38.歐氏空間中的旋轉(zhuǎn) 473
39.A Theorem on Immersion 475
40.On the Immersion of Manifolds in a Euclidean Space 477
41.On the Notion of Imbedding Classes 480
42.On the Imbedding of Manifolds in a Euclidean Space(l) 483
43.On Complex Analytic Cycles and Their Real Traces 486
44.On Critical Sections of Convex Bodies 498
45.Sk型奇點所屬的同調(diào)類 507
46.On Universal Invariant Forms 520
47.代數(shù)拓撲的一個新函子 536
48.代數(shù)拓撲I*函子論——齊性空間的實拓撲 539
49.代數(shù)拓撲I*函子論——纖維方的實拓撲 553
50.Theory of I*-Functor in Algebraic Topology-Effective Calculation and Axiomatization of 7*-Functor on Complexes 574
51.Theory of I*-Functor in Algebraic Topology-7*-Punctor of a Fiber Space 597
52.On Calculability of 7*-Measure with Respect to Complex-Union and Other Related Constructions 618
53.de Rham-Sullivan Measure of Spaces and Its Calculability 623
54.A Constructive Theory of Algebraic Topology-Part I.Notions of Measure and Calculability 543
55.De Rham Theorem from Constructive Point of View 663
56.Some Remarks on Jet-Transformations 685