高等院校研究生規(guī)劃教材:應用數值分析(第4版)
定 價:40 元
- 作者:文世鵬 著,張明 編
- 出版時間:2012/8/1
- ISBN:9787502192013
- 出 版 社:石油工業(yè)出版社
- 中圖法分類:O241
- 頁碼:352
- 紙張:
- 版次:1
- 開本:16開
《高等院校研究生規(guī)劃教材:應用數值分析(第4版)》是為理工科大學各專業(yè)普通開設的“數值分 析”課程編寫的教材。內容包括數值分析基礎,線性代數方程組的數值解 法,代數特征值問題,函數插值,數值積分與數值微分,函數逼近,非線 性方程和方程組的數值解法,常微分方程初、邊值問題的數值解法。每章 附有本章小結、習題和數值實驗題。全書以Matlab為平臺,深入淺出,脈 絡分明。 《高等院校研究生規(guī)劃教材:應用數值分析(第4版)》可作為理工科專業(yè)“數值分析”課程的教材 ,也可供學習數值分析與Matlab建模的科技人員參考。
《高等院校研究生規(guī)劃教材:應用數值分析(第4版)》是在《應用數值分析》(第三版)的基礎上,由中國石油大學(北京)、西南石油大學、長江大學、東北石油大學的有關老師共同編寫完成。本書的主要對象是非計算數學專業(yè)高年級本科生、理工科碩士研究生和相當程度的科技人員。讀者學習數值分析的目的,主要是為了掌握科學研究與工程設計的一種有力工具。因此,本書力求全面系統(tǒng)地介紹各類數值計算問題的實用的、有效的解法。通過介紹這些基本解法,強化數值計算的基本原理,突出算法的構造和分析。并在每章最后一節(jié)增加了求解實際問題的范例。
第一章 緒論
第一節(jié) 數值分析的研究對象和特點
第二節(jié) 數值問題與數值算法
第三節(jié) 數值計算的誤差分析
第四節(jié) Matlab與應用實例
本章小結
習題一
數值實驗題一
第二章 數值分析基礎
第一節(jié) 線性空間與賦范線性空間
第二節(jié) 內積空間與內積空間中的正交系
第三節(jié) 初等變換陣與特殊矩陣
第四節(jié) Matlab命令
本章小結
習題二
數值實驗題二
第三章 線性代數方程組的數值解法
第一節(jié) 引言
第二節(jié) 高斯消元法
第三節(jié) 矩陣的三角分解法
第四節(jié) 誤差分析和解的精度改進
第五節(jié) 大型稀疏方程組的迭代法
第六節(jié) 極小化方法
第七節(jié) Matlab與應用實例
本章小結
習題三
數值實驗題三
第四章 代數特征值問題
第一節(jié) 特征值的估計與數值穩(wěn)定性
第二節(jié) 冪法與反冪法
第三節(jié) 求實對稱矩陣特征值的雅可比方法
第四節(jié) 求矩陣全部特征值的QR方法
第五節(jié) Matlab與應用實例
本章小結
習題四
數值實驗題四
第五章 函數插值
第一節(jié) 插值基本問題
第二節(jié) 兩種基本的代數插值
第三節(jié) Hermite插值
第四節(jié) 分段低次插值
第五節(jié) 樣條插值
第六節(jié) 多維插值
第七節(jié) Matlab與應用實例
本章小結
習題五
數值實驗題五
第六章 數值積分與數值微分
第一節(jié) 等距節(jié)點的牛頓-柯特斯公式
第二節(jié) 復化求積法
第三節(jié) 提高求積公式精度的外推方法
第四節(jié) 高斯型求積公式
第五節(jié) 二重積分的數值方法
第六節(jié) 數值微分
第七節(jié) Matlab與應用實例
本章小結
習題六
數值實驗題六
第七章 函數逼近
第一節(jié) 函數逼近的基本問題
第二節(jié) 連續(xù)函數的最佳平方逼近
第三節(jié) 離散數據的最小二乘曲線擬合
第四節(jié) 非線性最小二乘曲線擬合
第五節(jié) Matlab與應用實例
本章小結
習題七
數值實驗題七
第八章 非線性方程和方程組的數值解法
第一節(jié) 預備知識
第二節(jié) 非線性方程求根的迭代法
第三節(jié) 非線性方程組的簡單迭代法
第四節(jié) 求解非線性方程組的牛頓型算法
第五節(jié) 無約束優(yōu)化算法
第六節(jié) Matlab與應用實例
本章小結
習題八
數值實驗題八
第九章 常微分方程初邊值問題的數值解法
第一節(jié) 求解初值問題數值方法的基本原理
第二節(jié) 高精度的單步法
第三節(jié) 線性多步法
第四節(jié) 一階微分方程組的解法
第五節(jié) 邊值問題的打靶法和差分法
第六節(jié) Matlab與應用實例
本章小結
習題九
數值實驗題九
參考文獻