目前,高熵合金的研究成為金屬材料領(lǐng)域的熱點(diǎn)和焦點(diǎn)。不僅僅是因?yàn)樗鼘儆谛碌姆N類(lèi)引人矚目,更多地是因?yàn)樗@現(xiàn)出了常規(guī)金屬和合金無(wú)法比擬的優(yōu)異性能。例如,高熵合金是所有工程材料中斷裂韌性很高的一類(lèi)合金;由于嚴(yán)重的晶格畸變,高熵合金本身具有捕獲缺陷的能力,因而表現(xiàn)出優(yōu)異的抗輻照性能。其中,面心立方結(jié)構(gòu)高熵合金由于容易獲得強(qiáng)韌化的匹配而備受科研人員的關(guān)注。本書(shū)將面心立方高熵合金的發(fā)展做了全面的梳理,包括面心立方的強(qiáng)韌化途徑和變形機(jī)理,同時(shí)也對(duì)其腐蝕性能、摩擦磨損方面的內(nèi)容以及功能特性進(jìn)行了展望。
1 高熵合金的定義、性質(zhì)及制備方法
1.1 高熵合金的定義及分類(lèi)
1.2 高熵合金的相形成規(guī)律
1.2.1 計(jì)算機(jī)模擬法
1.2.2 經(jīng)驗(yàn)參數(shù)計(jì)算法
1.3 高熵合金的本征特性
1.4 高熵合金的力學(xué)性能
1.4.1 強(qiáng)度和硬度
1.4.2 高溫性能
1.4.3 低溫性能
1.4.4 耐磨性
1.5 高熵合金的其他性能
1.5.1 磁性
1.5.2 抗輻照性能
1.5.3 熱電性能
1.5.4 超導(dǎo)性能
1.5.5 析氧性能
1.6 高熵合金的制備方法
1.6.1 氣相法
1.6.2 固相法
1.6.3 液相法
1.6.4 其他方法
1.7 面心立方高熵合金的發(fā)展
參考文獻(xiàn)
2 面心立方結(jié)構(gòu)高熵合金的細(xì)晶強(qiáng)化
2.1 面心立方高熵合金中的霍爾一佩奇關(guān)系
2.2 形變細(xì)晶強(qiáng)化
2.3 動(dòng)態(tài)細(xì)晶強(qiáng)化
2.4 高熵合金中的外添加第二相強(qiáng)化
參考文獻(xiàn)
3 面心立方結(jié)構(gòu)高熵合金相變強(qiáng)韌化
3.1 相變強(qiáng)韌化的理論基礎(chǔ)
3.1.1 相變的分類(lèi)
3.1.2 相變的基本原理
3.1.3 相變機(jī)制對(duì)力學(xué)性能的影響
3.2 面心立方結(jié)構(gòu)高熵合金的相變方式
3.2.1 擴(kuò)散型相變
3.2.2 無(wú)擴(kuò)散型相變(切變型)
3.3 相變強(qiáng)韌化的研究進(jìn)展
3.3.1 亞穩(wěn)態(tài)工程設(shè)計(jì)
3.3.2 溫度對(duì)相變的影響
3.3.3 應(yīng)變速率對(duì)相變的影響
3.3.4 TRIP和TWIP
3.3.5 高熵合金相變研究中的難題
參考文獻(xiàn)
4 納米面心立方結(jié)構(gòu)高熵合金
4.1 納米晶面心立方高熵合金
4.1.1 納米晶高熵合金的制備方法
4.1.2 納米晶高熵合金的晶界強(qiáng)化
4.1.3 納米晶高熵合金的力學(xué)性能
4.1.4 納米晶高熵合金的功能性能
4.1.5 納米晶高熵合金的良好熱穩(wěn)定性
4.2 納米顆粒增強(qiáng)增韌的面心立方高熵合金
4.2.1 納米析出高熵合金的設(shè)計(jì)
4.2.2 納米析出高熵合金的沉淀行為
4.2.3 納米析出高熵合金的沉淀強(qiáng)化
4.2.4 析出相形狀的影響因素
4.2.5 Ostwald熟化
4.2.6 析出相的粗化動(dòng)力學(xué)
4.2.7 高熵合金納米析出強(qiáng)化的分類(lèi)
參考文獻(xiàn)
5 共晶高熵合金
5.1 設(shè)計(jì)方法
5.1.1 相圖計(jì)算法
5.1.2 混合焓法
5.1.3 混合法
5.1.4 偽二元法
5.1.5 機(jī)器學(xué)習(xí)法
5.2 組織結(jié)構(gòu)
5.3 力學(xué)性能與強(qiáng)化機(jī)制
5.3.1 BCC+B2結(jié)構(gòu)共晶高熵合金
5.3.2 FCC+Laves結(jié)構(gòu)共晶高熵合金
5.3.3 FCC+B2結(jié)構(gòu)共晶高熵合金
5.4 熱機(jī)械加工性能
5.5 高溫組織穩(wěn)定性
5.6 共晶高熵合金展望
參考文獻(xiàn)
6 面心立方結(jié)構(gòu)高熵合金的表面強(qiáng)化
6.1 表面化學(xué)熱處理技術(shù)
6.1.1 表面滲氮
6.1.2 表面滲硼
6.1.3 表面滲碳
6.2 表面激光處理
6.3 表面鍍膜強(qiáng)化
6.3.1 力學(xué)性能
6.3.2 形貌特征
6.3.3 強(qiáng)化機(jī)制
6.3.4 斷裂機(jī)制
6.4 表面處理后的摩擦磨損性能
6.4.1 滲氮處理對(duì)摩擦磨損性能的影響
6.4.2 滲硼處理對(duì)摩擦磨損性能的影響
6.5 其他表面處理方法
參考文獻(xiàn)
7 面心立方結(jié)構(gòu)高熵合金在高應(yīng)變速率下的力學(xué)行為
7.1 面心立方高熵合金的極端力學(xué)行為
7.1.1 力學(xué)性能的極端性
7.1.2 低溫和高應(yīng)變速率下的變形機(jī)理
7.2 面心立方高熵合金動(dòng)態(tài)力學(xué)行為研究
7.2.1 動(dòng)態(tài)實(shí)驗(yàn)方法
7.2.2 動(dòng)態(tài)拉壓
7.2.3 動(dòng)態(tài)剪切
7.3 適用于面心立方高熵合金的動(dòng)態(tài)本構(gòu)模型
7.3.1 熱激活理論
7.3.2 Johnson-Cook本構(gòu)模型
7.3.3 Zerilli-Armstrong本構(gòu)模型
7。3.4 Bodner-Partom本構(gòu)模型
7.3.5 NNL本構(gòu)模型
7.3.6 PB本構(gòu)模型
7.3.7 KHL本構(gòu)模型
7.3.8 本構(gòu)模型的運(yùn)用
參考文獻(xiàn)
8 面心立方結(jié)構(gòu)高熵合金的第一性原理模擬與計(jì)算
8.1 第一性原理的簡(jiǎn)要介紹
8.2 第一性原理模擬方法在FCC高熵合金中的應(yīng)用
8.2.1 FCC高熵合金的常用計(jì)算模型
8.2.2 高熵合金的相穩(wěn)定性
8.2.3 高熵合金的彈性常數(shù)
8.2.4 高熵合金的形成熱力學(xué)分析
8.2.5 高熵合金的磁性和電子結(jié)構(gòu)
8.2.6 高熵合金層錯(cuò)能的計(jì)算
參考文獻(xiàn)
9 面心立方結(jié)構(gòu)高熵合金的腐蝕
9.1 金屬腐蝕概述
9.1.1 合金腐蝕的基本概念
9.1.2 腐蝕的危害及腐蝕防護(hù)的重要性
9.1.3 腐蝕防護(hù)與控制方法
9.1.4 腐蝕類(lèi)型的分類(lèi)
9.2 面心立方結(jié)構(gòu)高熵合金的腐蝕研究
9.3 面心立方高熵合金組成元素及微觀結(jié)構(gòu)對(duì)其腐蝕行為的影響
9.4 面心立方高熵合金的腐蝕特性行為
9.4.1 優(yōu)異的鈍化能力和抗點(diǎn)蝕性能
9.4.2 高熵合金的多級(jí)鈍化行為及多元素混合的氧化物膜
9.4.3 高熵合金的高抗點(diǎn)蝕機(jī)理
9.5 高耐蝕高熵合金體系的開(kāi)發(fā)
9.6 高熵合金腐蝕研究展望
參考文獻(xiàn)
10 面心立方結(jié)構(gòu)高熵合金的功能性能
10.1 抗輻照性能
10.2 軟磁性能
10.3 熱電性能