《材料科學(xué)與工程基礎(chǔ)》共分7章,分別闡述了晶體結(jié)構(gòu)與晶體缺陷、金屬機械性能、二元合金相圖、鐵碳合金相圖、鋼的熱處理、碳鋼及合金鋼、有色金屬及合金等機械類專業(yè)基礎(chǔ)內(nèi)容。系統(tǒng)地介紹了金屬的化學(xué)成分、組織結(jié)構(gòu)、機械性能和應(yīng)用特點方茴的基本概念及基礎(chǔ)知識。
《材料科學(xué)與工程基礎(chǔ)》可作為高等工科院校機械類及近機類專業(yè)的重要技術(shù)基礎(chǔ)課程用書,同時可供從事材料研究與應(yīng)用的工程技術(shù)人員作為了解專業(yè)知識,提高專業(yè)英語水平的閱讀材料。
隨著我國國際交流與合作不斷深入,雙語教學(xué)也逐漸受到各大學(xué)的重視并率先在部分基礎(chǔ)課和專業(yè)基礎(chǔ)課中進行了嘗試,取得了良好的效果。雙語教學(xué)與外語教學(xué)不同,它是通過外文載體傳授學(xué)科知識,使學(xué)生通過外文而不是中文去理解和掌握專業(yè)知識和理論,為學(xué)生奠定一個良好的外語環(huán)境。工程材料是我校最早被選定作為雙語教學(xué)的課程之一,在教學(xué)內(nèi)容選擇、教學(xué)方法研討、教學(xué)理念更新上進行了有益的探索。但是,教材問題長期困擾課程建設(shè),影響該課程教學(xué)效果的進一步提高。國外原版教材雖然具有內(nèi)容先進、信息量大、數(shù)據(jù)翔實、圖表案例豐富、語言純正、印刷美觀等特點,但它存在著教材結(jié)構(gòu)、體系、標(biāo)準(zhǔn)與國內(nèi)不同的問題,而且有些原版教材篇幅過大,內(nèi)容與我國現(xiàn)行教學(xué)基本要求不太一致。為此,解決工程材料課程的教材問題成為雙語教學(xué)課程建設(shè)的瓶頸。
本書是在參考國外權(quán)威教材的基礎(chǔ)上,編寫的涉及材料科學(xué)與工程的發(fā)展前沿、內(nèi)容難易程度適中、概念闡述與具體實例緊密結(jié)合、便于學(xué)生學(xué)習(xí)與理解學(xué)科知識的工程材料英文教材。全書共分7章,分別闡述了晶體結(jié)構(gòu)與晶體缺陷、金屬機械性能、二元合金相圖、鐵碳合金相圖、鋼的熱處理、碳鋼及合金鋼、有色金屬及合金等機械類專業(yè)基礎(chǔ)內(nèi)容。系統(tǒng)地介紹了金屬的化學(xué)成分、組織結(jié)構(gòu)、機械性能和應(yīng)用特點方面的基本概念及基礎(chǔ)知識。
本書具有如下特點:(1)為了使學(xué)生能夠順暢地與外國專家進行學(xué)術(shù)交流,同時還能熟練地與國內(nèi)的工程技術(shù)人員進行技術(shù)探討,我們在編寫鋼的熱處理、碳鋼及合金鋼、有色金屬及合金等章節(jié)時,詳細(xì)地敘述了國內(nèi)外金屬材料分類標(biāo)準(zhǔn)、牌號的使用等。
(2)專業(yè)學(xué)科知識里出現(xiàn)的英文詞匯往往具有音節(jié)多、出現(xiàn)頻度少、常附有前后綴等特點,為便于學(xué)生閱讀連貫,對關(guān)鍵詞、基本概念、基本定義加上漢語注釋。
Chapter 1 Crystalline Structures and Imperfections
1.1 Introduction
1.2 Classification of Materials
1.3 Structure of Atoms
1.4 Ideal Crystal, Space Lattice and Unit Cells
1.5 CrYstal Structures and Bravais Lattices
1.6 Cubic Unit Cells
1.7 Basic Crystalline Structures in Metals
1.8 Packing Factor
1.9 Directions and Planes in Crystalline Structures
1.9.1 Directions in Cubic Unit Cell
1.9.2 Miller Indices for Crystallographic Planes in Cubic Unit Cell
1.9.3 Linear Density and Planar Density in Crystalline Structures
1.10 Crystalline Imperfections
1.10.1 Point Defects
1.10.2 Linear Defects (Dislocations)
1.10.3 Planar Defects(Grain Boundaries)
1.10.4 Metallographic Examination
Problems
Chapter 2 Mechanical Properties of Metals
2.1 Introduction
2.2 Materials Relationship
2.3 Tensile Properties
2.3.1 Linear-Elastic Region and Elastic Constants
2.3.2 Yield Point
2.3.3 Ultimate Tensile Strength
2.3.4 Measures of Ductility (Elongation and Reduction
of Area)
2.4 Mechanism of Elastic and Plastic Deformation
2.4.1 Metallic Bond
2.4.2 Mechanism of Elastic Deformation
2.4.3 Mechanism of Plastic Deformation
2.5 Other Mechanical Properties
2.5.1 Compressiye Properties
2.5.2 Shear Properties
2.5.3 Impact Toughness
2.6 Work Hardening
2.6.1 Annealing of Work-hardened Materials
2.6.2 Hot Working and Cold Working
2.7 Hardness Test
2.7.1 Introduction
2.7.2 Brinell Hardness Test
2.7.3 Rockwell Hardness Test
2.7.4 Vickers Hardness Test
2.7.5 Scleroscope Hardness Tests
Problems
Chapter 3 Binary Phase Diagram
3.1 Introduction
3.2 Metallic Solid Solutions
3.2.1 Substitutional Solid Solutions
3.2.2 Interstitial Solid Solutions
3.3 Binary Isomorphous Alloy Systems
3.4 Construction of Phase Diagrams
3.4.1 Cooling Curve
3.4.2 Experimental Methods to Determine Phase Change Points
3.5 Solidification of Solid Solution Alloy
3.6 Binary Eutectic Alloy Systems
3.6.1 Slow Cooling of a Pb-Sn Alloy of Eutectic Composition
3.6.2 Slow Cooling of a 65% Pb-35% Sn Alloy
3.6.3 Slow Cooling of a 16% Pb-84% Sn Alloy
3.7 Binary Eutectoid Reactions
3.8 Binary Peritectic Alloy Systems
3.9 Phase Diagram with Intermediate Phases and Compounds
Problems
Chapter 4 Iron-Carbon Equilibrium Diagram
4.1 Introduction
4.2 Polymorphism and Allotropy
4.3 Fe-Fe3C Phase Diagram
4.3.1 Effect of Carbon on the Fe-Fe3C Phase Diagram
4.3.2 Solid Phases in the Fe-Fe3C Phase Diagram
4.3.3 Transformation Temperatures and Lines
4.4 Invariant Reactions in the Fe-Fe3 C Phase Diagram
4.5 Slow Cooling of Plain-carbon Steels
4.5.1 Eutectoid Plain-carbon Steel
4.5.2 Hypoeutectoid Plain-carbon Steels
4.5.3 Hypereutectoid Plain-carbon Steels
4.6 Cast Irons
4.6.1 General Properties
4.6.2 Types of Cast Irons
Problems
Chapter 5 Heat Treatment of Steels
5.1 Introduction
5.1.1 Heating Temperatures and Time
5.1.2 Cooling Rates
5.2 Critical Temperatures
5.3 Time-Temperature-Transformation (TTT Diagram)
5.4 Microstructures at Fast Cooling
5.4.1 Bainite
5.4.2 Martensite
5.5 General Purposes of Heat Treatment
5.6 Types of Heat Treatment
5.6.1 Annealing
5.6.2 Normalizing
5.6.3 Hardening and Tempering
5.7 Case Hardening
5.7.1 Atomic Diffusion in Solids
5.7.2 Case Hardening of Steel by Gas Carburizing
Problems
Chapter 6 Carbon and Alloy Steels
6.1 Introduction
6.2 Plain-carbon Steels
6.2.1 AIS!-SAE Classification System for Plain-carbon Steels
6.2.2 Chinese National Standard Classification System for Plain-carbon Steels
6.2.3 Characteristics and Applications of Plain-carbon Steels
6.3 Low-alloy Steels
6.3.1 Effect of Alloying Elements in Steels
6.3.2 Effects of Alloying Elements on the Critical Temperature of the Fe-Fe3 C Diagram
6.3.3 Classification of Low-alloy Steels
6.4 Tool Steels
6.4.1 Water-hardening Tool Steels (W-type)
6.4.2 Shock-resistant Tool Steels (S-type)
6.4.3 Cold-work (Oil-hardening) Tool Steels (O-type)
6.4.4 Cold-work (Medium-alloy, Air-hardening) Tool Steels (A-type)
6.4.5 Cold-work (high-carbon, high-chromium) Tool Steels (D-type)
6.4.6 Hot-work Tool Steels (H-type)
6.4.7 High-speed Tool Steels (T and M types)
6.5 Stainless Steels
6.5.1 Ferritie Stainless Steels
6.5.2 Martensitic Stainless Steels
6.5.3 Austenitie Stainless Steels
6.5.4 Duplex Stainless Steels
6.6 Chinese National Standard Classification System for Alloy Steels
6.6.1 Low Alloy High Strength Structural Steels
6.6.2 Alloy Carburizing Steels
6.6.3 Quenched & High Temperature Tempered Alloy Steels
6.6.4 Alloy Spring Steels
6.6.5 Gear Steels
6.6.6 Alloy Tool Steels
6.6.7 High Speed Tool Steels
6.6.8 Stainless Steels
Problems
Chapter 7 Nonferrous Metals and Its Alloys
7.1 Introduction
7.2 Aluminum and Its Alloys
7.2.1 Aluminum Alloy Temper and Designation System
7.2.2 Aluminum Alloys and Their Characteristics
7.2.3 Precipitation Strengthening of Aluminum Alloys
7.2.4 Precipitation Strengthening of an A1-4% Cu Alloy
7.2.5 Aluminum Casting Alloys
7.3 Copper and Its Alloys
7.3.1 Introduction
7.3.2 Copper Alloys
7.4 Titanium and Its Alloys
7.4.1 Introduction
7.4.2 Pure Titanium
7.4.3 Titanium Alloy Systems and Phase Diagrams
7.4.4 Classification of Titanium Alloys
7.5 Magnesium and Its Alloys
7.5.1 Introduction
7.5.2 Classification of Magnesium Alloys
7.5.3 Structure and Properties
Prohlems
References
APPENDIX Ⅰ Definitions
APPENDIX Ⅱ Conversion Factors to SI Units
Electronic Materials
Electronic materials are not a major type of material by volume but arean extremely important type of material for advanced engineering technology. The mostimportant electronic material is pure silicon that is modified in various ways to change itselectrical characteristics. A multitude of complex electronic circuits can be miniaturizedon a silicon chip that is about 3/4 in. square (1.90 cm square). Microelectronic deviceshave made pssible such new products as communication satellites, advanced comput-ers, handheld calculators, digital watches, and welding robots.
The properties of these various classes of materials are usually rather distinct. Forinstance, metals are opaque to light, and reflective. They are usually ductile, meaningthat they can be bent before they break. They are electrically and thermally conducting.On the other hand ceramics and glasses are usually brittle, can be transparent to light,and are good insulators. They are particularly useful at high temperatures or in corro-sive environments, since they retain their properties. Most polymers, on the otherhand, cannot withstand high temperatures. Most of them are insulators, and many arehighly deformable which is the real meaning of the word ”plastic", and some haveunique elastic properties (rubber bands). Semiconductors, of course, are distinguishedby their electrical behavior. All of these property characteristics, and the reasons theyexist, are discussed in some detail in the chapters that follow.