下冊包括微分方程和差分方程、多元函數(shù)微分學、多元函數(shù)積分學和無窮級數(shù)四章。全書內容通俗易懂,簡約實用,保持高等數(shù)學原有知識體系的同時,突出高等數(shù)學的基本思想和基本方法,內容編寫更加精簡。
本書以應用為目的,以必需、夠用為度,與專業(yè)課程學習和職業(yè)崗位需求密切相關的基本知識相一致;教學模式上適應以教師為主導,以新編教材為藍本,引導學生自主學習;各章節(jié)主題明確,結構合理,條理清晰,內容豐富。
第五章 微分方程和差分方程
第一節(jié) 微分方程的基本概念
第二節(jié) 一階微分方程
第三節(jié) 二階常系數(shù)線性微分方程
*第四節(jié) 差分方程
第六章 多元函數(shù)微分學
第一節(jié) 空間向量及其運箅
第二節(jié) 空間曲面和平面的方程
第三節(jié) 空間曲線和直線及其方程
第四節(jié) 多元函數(shù)的基本概念
第五節(jié) 偏導數(shù)和全微分
第六節(jié) 多元復合函數(shù)的求導法則與隱函數(shù)求導公式
第七節(jié) 多元函數(shù)微分學的應用
第八節(jié) 多元函數(shù)的極值及其求法
第七章 多元函數(shù)積分學
第一節(jié) 重積分的概念與性質
第二節(jié) 重積分的計算法
第三節(jié) 重積分的應用
第四節(jié) 曲線積分
第五節(jié) 格林公式及其應用
第六節(jié) 曲面積分
*第七節(jié) 奧高公式與斯托克斯公式
第八章 無窮級數(shù)
第一節(jié) 常數(shù)項級數(shù)的概念與性質
第二節(jié) 常數(shù)項級數(shù)的審斂法
第三節(jié) 冪級數(shù)
第四節(jié) 傅里葉級數(shù)