關(guān)于我們
書單推薦
新書推薦
|
固體中的光相互作用 (第二版)(英文影印版)
《固體中的光相互作用 (第二版)(英文影印版)》系統(tǒng)而全面地介紹了固體光特性的一些原理。本書為在固體材料吸收和熒光光譜領(lǐng)域,及激光領(lǐng)域工作的科研人員提供了詳實(shí)的理論背景。通過群論這一工具,以及對于對稱性的討論,本書統(tǒng)一地闡述了輻射場的量子理論、分子熱振動(dòng)、晶體、共價(jià)鍵等內(nèi)容。
《固體中的光相互作用 (第二版)(英文影印版)》既適合科研人員參考,也適合研究生和高水平本科生閱讀。
光無疑是這個(gè)世界上最重要的東西之一,F(xiàn)在的光源中,固體材料占有很大的比例!豆腆w中的光相互作用 (第二版)(英文影印版)》對于各種固體中的光相互作用都進(jìn)行了細(xì)致的討論,對于相關(guān)領(lǐng)域的工作者來說,這本內(nèi)容豐富、講解系統(tǒng)的專著無疑是不可錯(cuò)過的佳作。
(美)迪巴爾托洛,美國波士頓學(xué)院教授。
Preface to the Second Edition vii
1. Elements of Quantum Mechanics 1 1. Review of ClassicalMechanics . . . . . . . . . . . . . . . . 1 2. Vector Spaces and Linear Operators . . . . . . . . . . . . 4 3. Basic Postulates of Quantum Mechanics . . . . . . . . . . 10 4. Compatible Observables and Complete Set of Commuting Operators . . . . . . . . . . . . . . . . . . . 13 5. Formof the Operators . . . . . . . . . . . . . . . . . . . . 15 6. Matrix Formalism and Transformation Theory . . . . . . . 20 7. General Theory of Angular Momentum . . . . . . . . . . . 29 8. Time-Independent Perturbation Theory . . . . . . . . . . 35 9. Time-Dependent Perturbation Theory . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2. Elements of Group Theory 49 1. Properties of a Group. . . . . . . . . . . . . . . . . . . . . 49 Preface to the Second Edition vii 1. Elements of Quantum Mechanics 1 1. Review of ClassicalMechanics . . . . . . . . . . . . . . . . 1 2. Vector Spaces and Linear Operators . . . . . . . . . . . . 4 3. Basic Postulates of Quantum Mechanics . . . . . . . . . . 10 4. Compatible Observables and Complete Set of Commuting Operators . . . . . . . . . . . . . . . . . . . 13 5. Formof the Operators . . . . . . . . . . . . . . . . . . . . 15 6. Matrix Formalism and Transformation Theory . . . . . . . 20 7. General Theory of Angular Momentum . . . . . . . . . . . 29 8. Time-Independent Perturbation Theory . . . . . . . . . . 35 9. Time-Dependent Perturbation Theory . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2. Elements of Group Theory 49 1. Properties of a Group. . . . . . . . . . . . . . . . . . . . . 49 2. Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3. Theory of Representations . . . . . . . . . . . . . . . . . . 53 4. Schur's Lemma and Orthogonality Relations . . . . . . . . 58 5. Characters of a Group . . . . . . . . . . . . . . . . . . . . 61 6. Properties of the Irreducible Representations of a Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7. The Direct Product Representation . . . . . . . . . . . . . 65 8. Product Groups and Their Representations . . . . . . . . 66 9. Summary of Rules . . . . . . . . . . . . . . . . . . . . . . 68 10. Groups of Real Orthogonal Matrices . . . . . . . . . . . . 69 11. Space Groups and Symmetry of Crystalline Solids . . . . . 75 12. The Irreducible Representations of a Group of Primitive Translations . . . . . . . . . . . . . . . . . . . . . . . . . . 92 13. The Irreducible Representations of Space Groups . . . . . 95 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3. Connection of Quantum Mechanics with Group Theory 115 1. The Effect of an Orthogonal Coordinate Transformation on the Vectors of a Hilbert Space . . . . . . . . . . . . . . . . 115 2. The Symmetry Group of the Schr¨odinger Equation . . . . 117 3. The Fundamental Theorem for Functions and OperatorsTransforming Irreducibly . . . . . . . . . . 121 4. The Construction of Functions Transforming Irreducibly . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5. The Full Rotational Group and the Quantum Theory of Angular Momentum . . . . . . . . . . . . . . . . . . . . 127 6. The Spin of the Electron and the Double Valued Representations . . . . . . . . . . . . . . . . . . . . . . . . 137 7. The Kramers'Degeneracy . . . . . . . . . . . . . . . . . . 142 8. The Symmetric Group of the Hamiltonian and the Pauli Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4. The Hydrogen Atom 155 1. The Unperturbed Hamiltonian . . . . . . . . . . . . . . . . 155 2. The Spin-Orbit Interaction . . . . . . . . . . . . . . . . . . 157 3. The Zeeman Interaction . . . . . . . . . . . . . . . . . . . 160 4. Group Theoretical Considerations for the H Atom . . . . . 162 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5. The Complex Atom: Multiplet Theory 165 1. The Helium Atom. . . . . . . . . . . . . . . . . . . . . . . 165 2. The Many Electron Atom . . . . . . . . . . . . . . . . . . 169 3. Group Theoretical Considerations for a Complex Atom . . 176 4. The Energies of Spectral Terms . . . . . . . . . . . . . . . 180 5. Hund's Rules and the Principle of Equivalence of Electrons and Holes . . . . . . . . . . . . . . . . . . . . 188 6. The Spin-Orbit Splitting of Terms . . . . . . . . . . . . . . 190 7. An Example of Spin-Orbit and Zeeman Splitting . . . . . 193 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6. The Magnetic Ion in a Crystal: The Role of Symmetry 197 1. Bonding in Crystals . . . . . . . . . . . . . . . . . . . . . . 197 2. The Ionic Bond in Crystals . . . . . . . . . . . . . . . . . 198 3. Electronic Configurations and Properties ofMagnetic Ions . . . . . . . . . . . . . . . . . . . . . . . 201 4. The Crystalline Field Hypothesis . . . . . . . . . . . . . . 212 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7. The Weak Field Scheme 217 1. The Hamiltonian of the Free Ion . . . . . . . . . . . . . . 217 2. The Crystal Field Perturbation . . . . . . . . . . . . . . . 218 3. Application of theWeak Field Scheme . . . . . . . . . . . 219 4. Splittings of J Levels in Fields of Different Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 223 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8. The Medium Field Scheme 225 1. The Hamiltonian of the Free Ion . . . . . . . . . . . . . . 225 2. The Crystal Field Perturbation . . . . . . . . . . . . . . . 227 3. The Spin-Orbit Interaction . . . . . . . . . . . . . . . . . . 228 4. An Application of the Medium Field Scheme . . . . . . . . 228 5. The Method of Operator Equivalents: The Splitting of Transition Metal Ions Levels in an Octahedral Crystal Field . . . . . . . . . . . . . . . . . . . . . . . . . 230 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 9. The Strong Field Scheme 237 1. The Unperturbed Hamiltonian . . . . . . . . . . . . . . . . 237 2. The Crystal Field Perturbation . . . . . . . . . . . . . . . 239 3. The Electrostatic Interaction. . . . . . . . . . . . . . . . . 240 4. The Spin-Orbit Interaction . . . . . . . . . . . . . . . . . . 241 10. Covalent Bonding and Its Effect on Magnetic Ions in Crystals 243 1. The Relevance of Covalent Bonding . . . . . . . . . . . . . 243 2. The Formation of Molecular Orbitals . . . . . . . . . . . . 244 3. Example of Molecular Orbitals Formation . . . . . . . . . 246 4. The Use of Projection Operators in the Construction ofMolecularOrbitals . . . . . . . . . . . . . . . . . . . . . 258 5. The Formation of Hybrids . . . . . . . . . . . . . . . . . . 262 6. Hybrids of the Central Ion in a Tetrahedral Complex AB4 . . . . . . . . . . . . . . . . . . . . . . . . . 267 7. Hybrids of the Central Ion in an Octahedral Complex AB6 . . . . . . . . . . . . . . . . . . . . . . . . . 269 8. The Combinations of Ligand Orbitals in an ABn Complex . . . . . . . . . . . . . . . . . . . . . . . . . 271 9. The Energy Levels of an ABn Complex . . . . . . . . . . . 274 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 11. The Quantum Theory of the Radiation Field 283 1. The Classical Electromagnetic Field . . . . . . . . . . . . . 283 2. The Quantum Theory of the Electromagnetic Field . . . . 286 12. Molecular Vibrations 295 1. The Classical Theory of Molecular Vibrations . . . . . . . 295 2. The Symmetry of the Molecules and the Normal Coordinates . . . . . . . . . . . . . . . . . . . . . 299 3. How to Find the Normal Modes of Vibration . . . . . . . . 300 4. The Use of Symmetry Coordinates . . . . . . . . . . . . . 303 5. The Quantum Theory of Molecular Vibrations . . . . . . . 307 6. The Selection Rules for Infrared and Raman Transitions, The Fermi Resonance . . . . . . . . . . . . . . . . . . . . . 309 7. The Normal Modes and the Symmetry Coordinates of a Tetrahedral Complex AB4 . . . . . . . . . . . . . . . 312 8. The Normal Modes and the Symmetry Coordinates of an Octahedral Complex AB6 . . . . . . . . . . . . . . . 315 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 13. Lattice Vibrations 323 1. The Geometry of Crystalline Solids . . . . . . . . . . . . . 323 2. Lattice Vibrations of an Infinite Crystal with One AtomPer Unit Cell . . . . . . . . . . . . . . . . . . . 326 3. Lattice Vibrations of a Finite Crystal with One AtomPer Unit Cell . . . . . . . . . . . . . . . . . . . 329 4. Lattice Vibrations of a Crystal with More Than One AtomPer Unit Cell . . . . . . . . . . . . . . . . . . . 336 5. Thermodynamics of Phonons . . . . . . . . . . . . . . . . 339 6. Phonons and Photons. Similarities and Differences . . . . 346 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 14. The Ion-Photon Interaction: Absorption and Emission of Radiation 349 1. The Ion-Radiation Interaction . . . . . . . . . . . . . . . . 349 2. The Expansion of the Interaction Hamiltonian: Different Types of Radiation . . . . . . . . . . . . . . . . . 351 3. The Density of Final States . . . . . . . . . . . . . . . . . 353 4. The Transition Probability Per Unit Time . . . . . . . . . 354 5. Dipole Radiation . . . . . . . . . . . . . . . . . . . . . . . 356 6. Selection Rules for Radiative Transitions . . . . . . . . . . 358 7. About the Intensities of Radiative Transitions . . . . . . . 369 8. The Static Effects of the Interaction Between an Atomic System and the Electromagnetic Field . . . . . 373 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 15. The Judd-Ofelt Theory 375 1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 2. General Considerations . . . . . . . . . . . . . . . . . . . . 376 3. The Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 377 4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 381 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 16. The Ion-Vibration Interaction. Radiationless Processes, Thermal Shift, and Broadening of Sharp Lines 385 1. The Ion-Vibration Interaction . . . . . . . . . . . . . . . . 385 2. Radiationless Processes in Crystals . . . . . . . . . . . . . 387 3. Different Types of Line Broadening Mechanisms: Lorentzian and Gaussian Line Shapes . . . . . . . . . . . . 402 4. Theory of Thermal Broadening of Sharp Lines . . . . . . . 413 5. Theory of Thermal Line Shift . . . . . . . . . . . . . . . . 418 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 17. Vibrational-Electronic Interaction and Spectra 425 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 425 2. Ion-Vibration Interaction in Molecular Complexes . . . . . 425 3. Vibronic Spectra of Molecular Complexes . . . . . . . . . 427 4. Space Groups and Lattice Vibrations . . . . . . . . . . . . 438 5. Lattice Absorption in Perfect Crystals . . . . . . . . . . . 445 6. Phonon Activation Due to Impurity Ions in Perfect Crystals . . . . . . . . . . . . . . . . . . . . . . 447 7. Selection Rules for Vibronic Transitions Due to Magnetic Impurities in Crystals . . . . . . . . . . . . . 450 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 18. Energy Transfer Among Ions in Solids 455 1. Quantum-Mechanical Treatment of the Interactions Among Atoms . . . . . . . . . . . . . . . . . . . . . . . . . 455 2. Different Types of Interactions . . . . . . . . . . . . . . . . 469 3. Modes of Excitation and Transfer . . . . . . . . . . . . . . 478 4. Energy Transfer with No Migration of Excitation Among Donors . . . . . . . . . . . . . . . . . . . . . . . . 482 5. Energy Transfer with Migration of Excitation Among Donors . . . . . . . . . . . . . . . . . . . . . . . . 495 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 19. Absorption Spectra of Magnetic Ions in Crystals 517 1. The A and B Coefficients as Related to Magnetic Ions in Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 2. General Properties of Absorption Spectra . . . . . . . . . 520 3. Absorption Spectra of Magnetic Ions in Crystals . . . . . . 526 4. The Effects of Temperature on Absorption Spectra . . . . 532 5. Excited State Absorption. . . . . . . . . . . . . . . . . . . 541 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 20. Fluorescence Spectra of Magnetic Ions in Crystals 547 1. The Fluorescence Emission of Magnetic Ions Under Continuous Excitation . . . . . . . . . . . . . . . . . . . . 547 2. The Response of Fluorescent Systems to Transient Excitation . . . . . . . . . . . . . . . . . . . . 553 3. General Properties of the Fluorescence Decays in aMultilevel System . . . . . . . . . . . . . . . . . . . . 558 4. Interactions of Magnetic Ions and Their Effects on the FluorescenceOutput . . . . . . . . . . . . . . . . . 562 5. The Factors Affecting the Fluorescence Emission . . . . . 564 6. Fluorescence of Magnetic Ions in Crystals . . . . . . . . . 573 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 21. Elements of Laser Theory 583 1. Laser Conditions . . . . . . . . . . . . . . . . . . . . . . . 583 2. Examples of Ionic Solid State Lasers . . . . . . . . . . . . 598 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 Subject Index 607
你還可能感興趣
我要評(píng)論
|