本書研究了非線性算子不動點問題迭代逼近的收斂算法。這些算法包括相同空間下的一些非線性算子不動點問題的迭代序列,也包括不同空間下一些非線性算子不動點分裂問題的迭代序列,并在合適的條件下驗證了這些算法具有強收斂或者弱收斂性。書中給出了許多非常初等的例子,并通過這些例子說明一些非線性算子的關系、有界線性算子范數(shù)的計算等,使得
本書以反應擴散方程的基本理論為基礎,以生物、物理和化學等自然學科為背景,將幾類主要的微分方程、積分方程作為研究對象,介紹非局部反應擴散方程的基本理論、基本方法以及一些常見的應用。內(nèi)容包括非局部反應擴散方程的行波解、對應柯西問題解的適定性以及斑圖動力學理論;主要用到的方法有Leray-Schauder度理論、穩(wěn)定性分析、
本書是一部系統(tǒng)地介紹Nabla離散分數(shù)階系統(tǒng)理論的專著,其中包含了許多原創(chuàng)性成果和未解問題.針對Nabla離散分數(shù)階系統(tǒng),本書討論了其穩(wěn)定性分析和控制器設計問題,為了便于驗證所提理論,還介紹了數(shù)值實現(xiàn)方法.本書由淺入深、循序漸進地展開,雖不是字斟句酌的教科書,但所給出的結論均提供了巧妙且嚴謹?shù)淖C明,既介紹了靈感來源,提
本書主要討論無窮維Hamilton系統(tǒng),旨在用現(xiàn)代非線性分析的框架研究無窮維Hamilton系統(tǒng)。本書先介紹無窮維Hamilton系統(tǒng)的定義和性質(zhì),同時選取現(xiàn)代非線性分析中的常見問題為例解釋其應用。我們采用變分的方法,建立統(tǒng)一的變分框架并且發(fā)展一些抽象的臨界點理論來處理無窮維Hamilton系統(tǒng)。特別地,對于量子理論中
本書詳細介紹小波變換的起源、原理和應用,內(nèi)容覆蓋傅里葉變換、窗口傅里葉變換、框架理論、連續(xù)小波變換、多分辨率分析、Daubechies正交小波、小波包、小波提升理論以及小波在信號處理和圖像處理等方面的應用,涵蓋了發(fā)展比較成熟的小波分析的所有基本內(nèi)容。另外,本書特別關注實際應用和數(shù)學理論之間的關聯(lián),強調(diào)解決實際問題中的數(shù)
近年來,在圖像處理與強度可調(diào)輻射療法的實際應用背景下,分裂可行性問題成為近期非線性分析的研究熱點之一。本專著從三個方面研究分裂可行性問題與廣義分裂可行性問題(分裂公共不動點問題、分裂變分不等式問題和分裂公共零點問題)解的迭代逼近。主要體現(xiàn)在新算法設計、空間擴展和參數(shù)減弱限制條件等方面。對于豐富和擴展分裂可行性問題相關理
第1-12章是《測度論基礎與高等概率論》上冊,其中第1,2章是預備知識,第3-12章是測度論基礎。本書強調(diào)背景知識的深刻描述、基本概念的自然引入、科學素養(yǎng)的悄然滲透,從謀篇布局到板塊轉(zhuǎn)換,直至例題編制都精雕細琢,從章節(jié)引言到問題切人,直至定義、引理、命題、定理前的導語都字斟句酌。為避免初學者從初等概率論到高等概率論因躍
第1-12章是《測度論基礎與高等概率論學習指導》上冊,其中第1,2章是預備知識,第3-12章是測度論基礎。作為學習指導用書,本書與同名作者編著的《測度論基礎與高等概率論》配套,目的是部分地解決初學者學習“測度論”和“高等概率論”等課程的過程中在做題環(huán)節(jié)常常無從下手、方向感差、不知論證是否嚴謹,解答是否完整等問題。與教材
郭柏靈論文集第十六卷收集的是郭柏靈先生發(fā)表于2018年度的主要科研論文,涉及的方程范圍寬廣,有確定性偏微分方程和隨機偏微分方程,研究的問題包括適定性、爆破性、漸近性、孤立波等等。這些論文具有很高的學術價值,對偏微分方程、數(shù)學物理、非線性分析、計算數(shù)學等方向的科研工作者和研究生,是極好地參考著作。
《變分分析與應用》是BorisS.Mordukhovich教授在變分分析與非光滑優(yōu)化領域的**專著。本書主要在有限維空間中對變分分析的關鍵概念和事實進行系統(tǒng)和易于理解的闡述,這部分內(nèi)容包括一階廣義微分的基本結構、集合系統(tǒng)的極點原理、增廣實值函數(shù)的變分原理、集值映射的適定性、上導數(shù)分析法則、集值算子的單調(diào)性和一階次微分分