定 價(jià):48 元
叢書名:21世紀(jì)高等院!半p一流”建設(shè)規(guī)劃教材
- 作者:陳文彥,馬紅鋁 著
- 出版時(shí)間:2020/7/1
- ISBN:9787564189464
- 出 版 社:東南大學(xué)出版社
- 中圖法分類:O172
- 頁碼:292
- 紙張:膠版紙
- 版次:1
- 開本:16開
《微積分·上(英文版)》是為響應(yīng)東南大學(xué)國際化需求,根據(jù)國家教育部非數(shù)學(xué)專業(yè)數(shù)學(xué)基礎(chǔ)課教學(xué)指導(dǎo)分委員會制定的《工科類本科數(shù)學(xué)基礎(chǔ)課程教學(xué)基本要求》,并結(jié)合東南大學(xué)多年教學(xué)改革實(shí)踐經(jīng)驗(yàn)編寫的面向本科一年級學(xué)生開設(shè)的高等數(shù)學(xué)(微積分)課程的全英文教材。全書分為上、下兩冊,主要包括極限、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、常微分方程、級數(shù)、向量代數(shù)與空間解析幾何、多元函數(shù)微分學(xué)、多元函數(shù)積分學(xué)八個(gè)章節(jié)。
《微積分·上(英文版)》中的內(nèi)容是工科學(xué)生必備大學(xué)數(shù)學(xué)知識,可作為高等理工科院校非數(shù)學(xué)類專業(yè)本科生學(xué)習(xí)高等數(shù)學(xué)(微積分)的英文教材,也可供其他專業(yè)學(xué)生選用和相關(guān)科技工作者參考。
Chapter 1 Limits
1.1 Functions
1.1.1 Mapping
1.1.2 Function of Single Variable
1.1.3 Elementa ry Functions and Hyperbolic Functions
Exercise
1.2 The Concept ot Ljmits and its Properties
1.2.1 Limits of Sequence
1.2.2 Limits of Functions
1.2.3 Properties of Limits
Exercise
1.3 Rules for Finding Limits
1.3.1 Operation on Limits
1.3.2 Limits Theorem
1.3.3 Two Important Special Limits
Exercise
1.4 Infinitesimal and Infinite
1.4.1 Infinitesimal
1.4.2 Infinite
1.4.3 Compa rison between Infinitesimal
Exercise
1.5 Continuous Function
1.5.1 Continuity
1.5.2 Continuity of Elementa ry Functions
1.5.3 Discontinuity
1.5.4 Theo rems about Continuous Functions on a Closed InfervaI
Exercise
Chapter Review Exercise
Chapter 2 Differentiation
2.1 The Derivative
2.1.1 Two Prob Lems with one Theme
2.1.2 Definition of the Derivative
2.1.3 Geometric Interpretation of the De rivative
2.1.4 The Relationship between DifferentiabiIity and Continuity
Exercise
2.2 Finding Rules for Derivative
2,2.1 Derivative of Basic Elementa ry Functions
2.2.2 Derivative of Arithmetic CombinQtion
2.2.3 The Derivative Rule for Inverses
2.2.4 Derivative 04 Composition
2.2.5 Implicit DitferentiatIon
2.2.6 Parametric Dlfferentjalion
2.2.7 Related Rates Of Change
Exercise
2.3 Higher-Order Derivatives
Exercise
2.4 Differentials
2.4.1 Definition of Differentials
2.4.2 Differential Rules
2.4.3 Application of Diffe rentials in Approximation
Exercise
2.5 The Mean Value Theorem
2.5.1 Fermat’s Theorem
2.5.2 Rolle’s Theorem
2.5.3 Lagrange’s Theorem
2.5.4 Cauchy’s Theorem
Exercise
……
Chapter 3 The Integration
Chapter 4 Differential Equations
Solutions to Selected Problem