本書是編者結合長期在教學第一線積累的豐富教學經驗編寫而成。全書共11章,內容包括:函數(shù)、極限與連續(xù)、導數(shù)與微分、微分中值定理與導數(shù)的應用、不定積分、定積分及其應用、多元函數(shù)微分學、二重積分、無窮級數(shù)、微分方程、差分方程。本書按節(jié)配置適量習題,每章配有總習題。每章末通過二維碼鏈接知識點總結和典型問題選講視頻。書末鏈接部分
《數(shù)學分析講義》(上、下冊)是作者在中國科學院大學授課期間編寫的,講義內容主要參考了華東師范大學數(shù)學系編寫的《數(shù)學分析》,以及國內外一些優(yōu)秀的教材,并在此基礎上作了一些補充。講義注重分析的幾何直觀性、理論的嚴謹和系統(tǒng)性、應用的深入性,以及與后續(xù)學科的銜接性。
函數(shù)的凸性和廣義凸性是運籌學和經濟學研究中的重要基礎理論.本書第一版系統(tǒng)地介紹數(shù)值函數(shù)的各種類型的廣義凸性以及它們在運籌學和經濟學中的一些應用.主要內容包括:凸集與凸函數(shù)、擬凸函數(shù)、可微函數(shù)的廣義凸性、廣義凸性與最優(yōu)性條件、不變凸性及其推廣、廣義單調性與廣義凸性、二次函數(shù)的廣義凸性和幾類分式函數(shù)的廣義凸性.在此基礎上,
本書主要介紹了無窮維下非光滑函數(shù)和非凸集合的一些基本概念和性質,以及應用到控制理論中。首先在引言章節(jié),作者從數(shù)學優(yōu)化例子出發(fā)引出了本書的主題-經典微分學的深入研究-非光滑分析。然后分別用三章講述了非光滑函數(shù)和非凸集合的一些計算法則及應用場景:第一章介紹了Hilbert空間中的鄰近次微分計算法則;第二章介紹了Banach
本書主要介紹粗糙微分方程及其動力學方面的若干研究成果.全書分為七章.第1章介紹相關背景材料;第2章為全書的基礎,給出粗糙路徑、高斯粗糙路徑、受控粗糙路徑的定義及相關性質;第3章介紹粗糙積分和粗糙微分方程的解理論;第4章介紹隨機動力系統(tǒng)基本理論;第5章介紹有限維粗糙微分方程所生成隨機動力系統(tǒng)的相關動力學——中心流形、隨機
郭柏靈論文集第十七卷由17篇獨立論文組成,主要包括了郭柏靈院士在2018年發(fā)表的全部論文。郭柏靈論文集包括的主要內容有:確定性偏微分方程和隨機偏微分方程,研究的問題包括適定性、爆破性、漸近性、孤立波等等。這些論文具有很高的學術價值,對偏微分方程、數(shù)學物理、非線性分析、計算數(shù)學等方向的科研工作者和研究生,是極好地參考著作
本書針對非凸變分不等式投影類方法中客觀存在的錯誤,給出修正的理論結果,進而利用投影技術研究上述正則非凸變分不等式與不動點問題、變分包含問題之間的正確關系,從而建立正則非凸變分不等式和不動點問題之間的等價性。利用這種等價性來討論正則非凸變分不等式的解的存在性,并且利用這等價替代形式來構造解正則非凸變分不等式的投影類迭代算
泛函分析
On Existence and Multiplicity of Solutions for Some Nonlinea
自1998年PT對稱量子力學(非經典量子力學)被提出以來,逐步激發(fā)了人們對有關PT對稱理論和實驗方面的廣泛關注.作者自2007年開始研究PT對稱相關的問題,本書的主要內容源于作者的部分研究成果.本書主要闡述PT對稱理論、方法及其在線性和非線性波方程中的應用,主要針對具有物理意義的不同復值PT對稱勢,研究非厄米Hamil