抽象代數(shù)I是南開大學(xué)數(shù)學(xué)專業(yè)的必修課,抽象代數(shù)II是該專業(yè)本科的選修課和研究生的必修課。結(jié)合代數(shù)是應(yīng)用非常廣泛的一種代數(shù)結(jié)構(gòu)。將這些內(nèi)容作為此課程的內(nèi)容是非常合適的。在長期教授此課程后所形成本書,含有:結(jié)合代數(shù),張量積、張量代數(shù),二次型、Clifford代數(shù),群代數(shù)及其表示和某些非結(jié)合代數(shù)等五章。本書力求深入淺出,循序
本書是根椐理工科的數(shù)學(xué)教學(xué)大綱編寫的,作為昆明理工大學(xué)《線性代數(shù)》課程使用的教材。在使用過程中,作過多次修改。在內(nèi)容編寫上,我們注意到以下幾點(diǎn):第一,本課程的教學(xué)時數(shù)少,為了使學(xué)生能在較少的時間內(nèi)掌握好基本知識,編寫時盡量使各章內(nèi)容少而精,重點(diǎn)突出,便于理解和掌握.特別是對第三、四兩章的理論體系的安排及定理的證明上,更
《線性代數(shù)》涵蓋了教育部制定的大學(xué)本科線性代數(shù)的教學(xué)基本要求的內(nèi)容.全書共分5章,分別為行列式,矩陣,向量組的線性相關(guān)性與線性方程組的解法,特征值、特征向量與二次型,線性空間與線性變換.全書內(nèi)容深入淺出,層次簡潔,注重應(yīng)用,每章后配有適量習(xí)題并按難易程度分類,并在書后附有習(xí)題參考答案或提示!毒性代數(shù)》可供普通高等院校
《線性代數(shù)(第2版)》共分七章,內(nèi)容包括行列式、矩陣及其運(yùn)算、矩陣的初等變換、向量組的線性相關(guān)性、矩陣的相似變換、二次型、線性空間與線性變換。各章后均配有適量的習(xí)題,書后附有習(xí)題答案與提示。另外還專門編有與《線性代數(shù)(第2版)》配套的輔導(dǎo)書、輔導(dǎo)光盤、作業(yè)集等!毒性代數(shù)(第2版)》便于教學(xué)與自學(xué),可作為高等院校工科和
《抽象代數(shù)1:代數(shù)學(xué)基礎(chǔ)》可作為高等院校數(shù)學(xué)專業(yè)本科生及理工科研究生抽象代數(shù)課程的教材,也可供有關(guān)科技人員及大專院校師生自學(xué)參考。抽象代數(shù)(或近世代數(shù))是數(shù)學(xué)的一個基礎(chǔ)學(xué)科,也是數(shù)學(xué)及相關(guān)專業(yè)的基礎(chǔ)課程.南開大學(xué)“抽象代數(shù)”課程的改革是陳省身生前倡導(dǎo)的南開大學(xué)數(shù)學(xué)專業(yè)教學(xué)改革的一部分,《代數(shù)學(xué)基礎(chǔ)》是該課程改革后使用的
本書是普通高等教育“十一五”國家級規(guī)劃教材。全書系統(tǒng)介紹了群、環(huán)、域的基本概念與初步性質(zhì),共分為三個部分。第一部分講述群的基本概念與性質(zhì),除了通常的群、子群、正規(guī)子群及群同態(tài)的基本定理外,還介紹了群的應(yīng)用。第二部分包括環(huán)、子環(huán)、理想與商環(huán)的基本概念與性質(zhì),特別討論了整環(huán)的性質(zhì)。第三部分討論了域的擴(kuò)張的理論。
全書共分兩卷,涉及的面很廣,可以說概括了1920—1940年代數(shù)學(xué)的主要成就,也包括了1940年以后代數(shù)學(xué)的新進(jìn)展,是代數(shù)學(xué)的經(jīng)典著作之一。本書是第二卷。這一卷可分成3個獨(dú)立的章節(jié)組:第12至14章討論線性代數(shù)、代數(shù)和表示論;第15至17章是理想理論;第18至20章討論賦值域、代數(shù)函數(shù)及拓?fù)浯鷶?shù)。
本書是范德瓦爾登所著,是代數(shù)學(xué)中的經(jīng)典,為后代代數(shù)學(xué)者所推崇并被大量引用。本書得到馮克勤、胡作玄等人的推薦。
本書從模的角度重新審視和認(rèn)識線性代數(shù)課程,內(nèi)容包括:線性代數(shù)研究的對象、向量空間與線性變換、主理想整環(huán)上的模及其分解、向量空間在線性算子下的分解等。
這是E.Hecke寫的一本代數(shù)數(shù)論入門書,初版于1923年用德文出版,即產(chǎn)生巨大影響。1981年,Springer出版了英文版,并入GTM從書之中。本書觀點(diǎn)高,從具體例子入手,導(dǎo)入重要的概念。 本書向讀者介紹了構(gòu)成代數(shù)數(shù)論理論框架的一般問題的一個理解。從數(shù)學(xué)特別是算數(shù)的發(fā)展中引出結(jié)論,并用群論的術(shù)語與方法來給出關(guān)于有