本書采用學(xué)生易于接受的知識(shí)結(jié)構(gòu)和英語(yǔ)表述方式,科學(xué)、系統(tǒng)地介紹了微積分(上冊(cè))中函數(shù)的概念、極限和連續(xù)、導(dǎo)數(shù)和微分、中值定理和導(dǎo)數(shù)的應(yīng)用、不定積分和定積分等知識(shí)。強(qiáng)調(diào)通用性和適用性,兼顧先進(jìn)性。本書起點(diǎn)低,難度坡度適中,語(yǔ)言簡(jiǎn)潔明了,不僅適用于課堂教學(xué)使用,同時(shí)也適用于自學(xué)自習(xí)。全書有關(guān)鍵詞索引,習(xí)題按章配置,題量適中,題型全面,書后附有答案。
本書讀者對(duì)象為高等院校理工、財(cái)經(jīng)、醫(yī)藥、農(nóng)林等專業(yè)大學(xué)生和教師,特別適合作為中外合作辦學(xué)的國(guó)際教育班的學(xué)生以及準(zhǔn)備出國(guó)留學(xué)深造學(xué)子的參考書。
本書可以作為大學(xué)數(shù)學(xué)微積分雙語(yǔ)或英語(yǔ)教學(xué)教師和準(zhǔn)備出國(guó)留學(xué)深造學(xué)子的參考書。特別適合中外合作辦學(xué)的國(guó)際教育班的學(xué)生,能幫助他們較快地適應(yīng)全英文的學(xué)習(xí)內(nèi)容和教學(xué)環(huán)境,完成與國(guó)外大學(xué)學(xué)習(xí)的銜接。本書在定稿之前已在多個(gè)學(xué)校作為校本教材試用,而且得到了師生的好評(píng)。
毛綱源,武漢理工大學(xué)資深教授,畢業(yè)于武漢大學(xué),留校任教,后調(diào)入武漢工業(yè)大學(xué)(現(xiàn)合并為武漢理工大學(xué))擔(dān)任數(shù)學(xué)物理系系主任,在高校從事數(shù)學(xué)教學(xué)與科研工作40余年,除了出版多部專著(早在1998年,世界科技出版公司W(wǎng)orld Scientific Publishing Company就出版過(guò)他主編的線性代數(shù)Linear Algebra的英文教材)和發(fā)表數(shù)十篇專業(yè)論文外,還發(fā)表10余篇考研數(shù)學(xué)論文。
主講微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等課程。理論功底深厚,教學(xué)經(jīng)驗(yàn)豐富,思維獨(dú)特。曾多次受邀在各地主講考研數(shù)學(xué),得到學(xué)員的廣泛認(rèn)可和一致好評(píng):“知識(shí)淵博,講解深入淺出,易于接受”“解題方法靈活,技巧獨(dú)特,輔導(dǎo)針對(duì)性極強(qiáng)”“對(duì)考研數(shù)學(xué)的出題形式、考試重點(diǎn)難點(diǎn)了如指掌,上他的輔導(dǎo)班受益匪淺”。
周海嬰,北京師范大學(xué)珠海分校副教授,畢業(yè)于南開大學(xué),香港浸會(huì)大學(xué)數(shù)學(xué)博士,主講微積分、概率論與數(shù)理統(tǒng)計(jì)、統(tǒng)計(jì)學(xué)、抽樣技術(shù)等課程。在國(guó)內(nèi)外權(quán)wei期刊發(fā)表中英文論文10余篇。
Chapter 1 Functions(1)
1.1 Preliminary knowledge(1)
1.1.1 Inequalities and their properties(1)
1.1.2 Absolute value and its properties(5)
1.1.3 The range of variable(8)
1.2 Functions(10)
1.2.1 Concept of functions(10)
1.2.2 Features of a function(12)
1.2.3 Inverse functions(16)
1.2.4 Composite functions(19)
1.2.5 Elementary functions(20)
1.2.6 Nonelementary functions(30)
1.2.7 Implicit functions(33)
Exercise 1(33)
Chapter 2 Limit and Continuity(36)
2.1 Limit(36)
2.1.1 Definition of a sequence(36)
2.1.2 Descriptive definition of limit of a sequence(36)
2.1.3 Quantitative definition of limit of a sequence(38)
2.2 Limits of functions(39)
2.2.1 Definition of finite limits of functions as x→x0(39)
2.2.2 Definition of infinite limits of functions as x→x0(42)
2.2.3 Limits of functions as independent variable tending to infinity(44)
2.2.4 Left limit and right limit(47)
2.2.5 The properties of limits of functions(48)
2.2.6 Operation rules of limits(50)
2.2.7 Criteria of existence of limits and two important limits (54)
2.2.8 Infinitesimal, infinity and their basic properties(58)
2.2.9 Simple application of limit in economics(62)
2.3 Continuity of functions(64)
2.3.1 Continuity(64)
2.3.2 Discontinuous points of a function(68)
2.3.3 Operations and properties of continuous functions(69)
2.3.4 Continuity of elementary functions(72)
2.3.5 Continuity of the inverse functions(73)
2.3.6 Properties of continuous functions on closed interval(73)
Exercise 2(76)
Chapter 3 Derivative and differential(80)
3.1 Concept of derivative(80)
3.1.1 Introduction of derivative(80)
3.1.2 Definition of derivative(82)
3.1.3 Lefthand derivative and righthand derivative(84)
3.1.4 The relationship between differentiability and continuity of functions(85)
3.1.5 Applying the definition of derivative to find derivatives(87)
3.1.6 Geometric interpretation of derivative(91)
3.2 Rules of finding derivatives(91)
3.2.1 Four arithmetic operation rules of derivatives(91)
3.2.2 Derivative rules of composite functions(93)
3.2.3 Derivative rules of inverse functions(95)
3.2.4 Derivative rules of implicit functions(96)
3.2.5 Derivative rules of function with parametric forms(97)
3.2.6 Some special derivative rules(98)
3.2.7 Basic differentiation formulas(100)
3.2.8 Derivatives of higher order(102)
3.3 Differentials of functions(104)
3.3.1 Definition of differentials(104)
3.3.2 The equations of a tangent and a normal(107)
3.3.3 Formulas and operation rule of differentials(109)
3.3.4 Application of differentials in approximating values(111)
Exercise 3(112)
Chapter 4 The mean value theorems and application of derivatives(116)
4.1 The mean value theorems(116)
4.1.1 Rolle’s theorem(116)
4.1.2 Lagrange’s theorem(118)
4.1.3 Cauchy’s theorem(121)
4.2 L’Hospital’s rule(123)
4.2.1 Evaluating limits of indeterminate forms of the type 00(124)
4.2.2 Evaluating the limits of indeterminate forms of the type ∞∞(126)
4.2.3 Evaluating the limits of other indeterminate forms(127)
4.3 Taylor formula(129)
4.4 Discuss properties of functions by derivatives(136)
4.4.1 Monotonicity of functions(136)
4.4.2 Concavity and Convexity(140)
4.5 Extreme values(143)
4.6 Absolute maxima (minima) and its application(148)
4.6.1 Absolute maxima (minima)(148)
4.6.2 Applied problems of absolute maxima (minima)(150)
4.7 Graphing(152)
4.7.1 Asymptotes lines of curves(152)
4.7.2 Sophisticated graphing(154)
4.8 Application of derivatives in economics(158)
4.8.1 Marginal analysis(158)
4.8.2 Elasticity of function(164)
Exercise 4(169)
Chapter 5 Indefinite integrals(173)
5.1 Antiderivative and indefinite integral(173)
5.1.1 Concept of antiderivatives(173)
5.1.2 Concept of indefinite integrals(175)
5.2 Fundamental integral formulas(177)
5.3 Integral methods of substitution(180)
5.3.1 The first kind of substitution(180)
5.3.2 The second kind of substitution(185)
5.4 Integration by parts(189)
5.5 Evaluate indefinite integrals of some special type(194)
5.5.1 Integrals of rational functions(194)
5.5.2 Integrals of irrational functions(198)
5.5.3 Integrals of trigonometric functions(199)
5.5.4 Integral of piecewise defined function(201)
Exercise 5(202)
Chapter 6 Definite integrals(205)
6.1 Definition of definite integrals(205)
6.1.1 Two examples for definite integrals(205)
6.1.2 Definition of definite integrals(207)
6.1.3 Geometric meaning of definite integrals(211)
6.2 Basic properties of definite integrals(212)
6.3 Fundamental theorem of calculus(219)
6.3.1 A function of upper limit of integral(219)
6.3.2 NewtonLeibniz formula(222)
6.4 Integration by substitution and by parts for definite integrals(224)
6.4.1 Integration by substitution for definite integrals(225)
6.4.2 Integration by parts for definite integrals(229)
6.5 Improper integrals(231)
6.5.1 Improper integrals on infinite intervals(231)
6.5.2 Improper integrals of unbounded functions(239)
6.6 Application of integrals(241)
6.6.1 Computing areas of plan figures(241)
6.6.2 Volume of a solid of revolution(245)
6.6.3 Some economic applications of integrals(247)
Exercise 6(249)
Answers to exercises(256)
Answers to exercise1(256)
Answers to exercise2(257)
Answers to exercise3(257)
Answers to exercise4(259)
Answers to exercise5(261)
Answers to exercise6(262)