Steven Zucker教授在代數(shù)幾何中的Hodge理論、L^2和L^p (p ≠ 2)上同調(diào)以及局部對(duì)稱空間的緊化等領(lǐng)域做出了重要的貢獻(xiàn),并于20世紀(jì)80年代提出了著名的Zucker猜想。本書(shū)的內(nèi)容涉及了Zucker教授研究和關(guān)注的相關(guān)領(lǐng)域,由Ayoub, Bierstone, Griffiths, M. Green, Hain, Ohsawa等該領(lǐng)域的知名專家精心寫(xiě)成,包含了關(guān)于Hodge理論、復(fù)分析和幾何中的L2方法以及代數(shù)幾何中的相關(guān)結(jié)果的研究和介紹性文章。
Preface
The Research Career of Steven Zucker: An Autobiographical Account
On the Hodge Theory of Stratified Spaces
Simpson's Construction of Varieties with Many Local Systems
Motives and Algebraic Cycles: A Selection of Conjectures and Open Questions
Resolution of Singularities of Differential Forms and Hsiang-Pati Coordinates
Nilpotent Cones and Their Representation Theory
Recent Results on Cohomology Jump Loci
On Semipositivity,Injectivity and Vanishing Theorems
The Business of Height Pairings
Extremal Degenerations of Polarized Hodge Structures
Deligne-Beilinson Cohomology of Affine Groups
Singularities in Arbitrary Characteristic via Jet Schemes
Extended Period Domains, Algebraic Groups, and Higher Albanese Manifolds
Motivic and Automorphic Aspects of the Reductive Borel-Serre Compactification
An Update of Extension Theorems by the L2 Estimates for ?
A Young Person's Guide to Mixed Hodge Modules
Perverse Sheaves and the Reductive Borel-Serre Compactification
Nonlinear Harmonic Forms and Indefinite Bochner Formulas