定 價(jià):39.5 元
叢書(shū)名:天元基金影印數(shù)學(xué)叢書(shū)
- 作者:[美] 德貝內(nèi)代托(DiBenedetto E.) 著
- 出版時(shí)間:2007/10/1
- ISBN:9787040226652
- 出 版 社:高等教育出版社
- 中圖法分類:O174.5
- 頁(yè)碼:485
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16開(kāi)
《實(shí)分析(影印版)》是一本內(nèi)容十分翔實(shí)的實(shí)分析教材。它包含集論,點(diǎn)集拓?fù)。測(cè)度與積分,Lebesgue函數(shù)空間,Banach空間與Hilbert空間,連續(xù)函數(shù)空間,廣義函數(shù)與弱導(dǎo)數(shù),Sobolev空間與Sobolev嵌入定理等;同時(shí)還包含Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli—Arzela定理,Calderon—Zygmund分解定理,F(xiàn)efferman—Stein定理。Marcinkiewlcz插定理等實(shí)分析中有用的內(nèi)容。
《實(shí)分析(影印版)》內(nèi)容由淺入深。讀者具有扎實(shí)的數(shù)學(xué)分析知識(shí)基礎(chǔ)便可學(xué)習(xí)《實(shí)分析(影印版)》,學(xué)完《實(shí)分析(影印版)》的讀者將具備學(xué)習(xí)分析所需要的實(shí)變與泛函(不包括算子理論)的準(zhǔn)備知識(shí)和訓(xùn)練。
《實(shí)分析(影印版)》主要包含國(guó)外反映近代數(shù)學(xué)發(fā)展的純數(shù)學(xué)與應(yīng)用數(shù)學(xué)方面的優(yōu)秀書(shū)籍,天元基金邀請(qǐng)國(guó)內(nèi)各個(gè)方向的知名數(shù)學(xué)家參與選題的工作,經(jīng)專家遴選、推薦,由高等教育出版社影印出版。《實(shí)分析(影印版)》可作為高年級(jí)本科生教材或參考書(shū)。
為了更好地借鑒國(guó)外數(shù)學(xué)教育與研究的成功經(jīng)驗(yàn),促進(jìn)我國(guó)數(shù)學(xué)教育與研究事業(yè)的發(fā)展,提高高等學(xué)校數(shù)學(xué)教育教學(xué)質(zhì)量,本著“為我國(guó)熱愛(ài)數(shù)學(xué)的青年創(chuàng)造一個(gè)較好的學(xué)習(xí)數(shù)學(xué)的環(huán)境”這一宗旨,天元基金贊助出版“天元基金影印數(shù)學(xué)叢書(shū)”。
該叢書(shū)主要包含國(guó)外反映近代數(shù)學(xué)發(fā)展的純數(shù)學(xué)與應(yīng)用數(shù)學(xué)方面的優(yōu)秀書(shū)籍,天元基金邀請(qǐng)國(guó)內(nèi)各個(gè)方向的知名數(shù)學(xué)家參與選題的工作,經(jīng)專家遴選、推薦,由高等教育出版社影印出版。為了提高我國(guó)數(shù)學(xué)研究生教學(xué)的水平,暫把選書(shū)的目標(biāo)確定在研究生教材上。當(dāng)然,有的書(shū)也可作為高年級(jí)本科生教材或參考書(shū),有的書(shū)則介于研究生教材與專著之間。
歡迎各方專家、讀者對(duì)本叢書(shū)的選題、印刷、銷售等工作提出批評(píng)和建議。
Preface
Acknowledgments
Preliminaries
1 Countable sets
2 The Cantor set
3 Cardinality
3.1 Some examples
4 Cardinality of some infinite Cartesian products
5 Orderings, the maximal principle, and the axiom of choice
6 Well-ordering
6.1 The first uncountable
Problems and Complements
Ⅰ Topologies and Metric Spaces
1 Topological spaces
1.1 Hausdorff and normal spaces
2 Urysohns lemma
3 The Tietze extension theorem
4 Bases, axioms of countability, and product topologies
4.1 Product topologies
5 Compact topological spaces
5.1 Sequentially compact topological spaces
6 Compact subsets of RN
7 Continuous functions on countably compact spaces
8 Products of compact spaces
9 Vector spaces
9.1 Convex sets
9.2 Linear maps and isomorphisms
10 Topological vector spaces
10.1 Boundedness and continuity
11 Linear functionals
12 Finite-dimensional topological vector spaces
12.1 Locally compact spaces
13 Metric spaces
13.1 Separation and axioms of countability
13.2 Equivalent metrics
13.3 Pseudometrics
14 Metric vector spaces
14.1 Maps between metric spaces
15 Spaces of continuous functions
15.1 Spaces of continuously differentiable functions
16 On the structure of a complete metric space
17 Compact and totally bounded metric spaces
17.1 Precompact subsets of X
Problems and Complements
Ⅱ Measuring Sets
1 Partitioning open subsets of RN
2 Limits of sets, characteristic functions, and or-algebras
3 Measures
3.1 Finite,a-finite, and complete measures
3.2 Some examples
4 Outer measures and sequential coverings
4.1 The Lebesgue outer measure in RN
4.2 The Lebesgue-Stieltjes outer measure
5 The Hausdorff outer measure in RN
6 Constructing measures from outer measures
7 The Lebesgue——Stieltjes measure on R
7.1 Borel measures
8 The Hausdorff measure on RN
9 Extending measures from semialgebras to a-algebras
9.1 On the Lebesgue-Stieltjes and Hausdorff measures
10 Necessary and sufficient conditions for measurability
11 More on extensions from semialgebras to a-algebras
12 The Lebesgue measure of sets in RN
12.1 A necessary and sufficient condition of naeasurability
13 A nonmeasurable set
14 Borel sets, measurable sets, and incomplete measures
14.1 A continuous increasing function f : [0, 1] → [0, 1]
14.2 On the preimage of a measurable set
14.3 Proof of Propositions 14.1 and 14.2
15 More on Borel measures
15.1 Some extensions to general Borel measures
15.2 Regular Borel measures and Radon measures
16 Regular outer measures and Radon measures
16.1 More on Radon measures
17 Vitali coverings
18 The Besicovitch covering theorem
19 Proof of Proposition 18.2
20 The Besicovitch measure-theoretical covering theorem
Problems and Complements
Ⅲ The Lebesgue Integral
1 Measurable functions
2 The Egorov theorem
2.1 The Egorov theorem in RN
2.2 More on Egorovs theorem
3 Approximating measurable functions by simple functions
4 Convergence in measure
5 Quasi-continuous functions and Lusins theorem
6 Integral of simple functions
7 The Lebesgue integral of nonnegative functions
8 Fatous lemma and the monotone convergence theorem
9 Basic properties of the Lebesgue integral
10 Convergence theorems
11 Absolute continuity of the integral
12 Product of measures
13 On the structure of (A*p )
14 The Fubini-Tonelli theorem
14.1 The Tonelli version of the Fubini theorem
15 Some applications of the Fubini-Tonelli theorem
15.1 Integrals in terms of distribution functions
15.2 Convolution integrals
15.3 The Marcinkiewicz integral
16 Signed measures and the Hahn decomposition
17 The Radon-Nikodym theorem
18 Decomposing measures
18.1 The Jordan decomposition
18.2 The Lebesgue decomposition
18.3 A general version of the Radon-Nikodym theorem
Problems and Complements
IV Topics on Measurable Functions of Real Variables
1 Functions of bounded variations
2 Dini derivatives
3 Differentiating functions of bounded variation
4 Differentiating series of monotone functions
5 Absolutely continuous functions
6 Density of a measurable set
7 Derivatives of integrals
8 Differentiating Radon measures
9 Existence and measurability of Dvv
9.1 Proof of Proposition 9.2
10 Representing Dvv
10.1 Representing Duv for v << #
10.2 Representing Duv for v u
11 The Lebesgue differentiation theorem
11.1 Points of density
11.2 Lebesgue points of an integrable function
12 Regular families
13 Convex functions
14 Jensens inequality
15 Extending continuous functions
16 The Weierstrass approximation theorem
17 The Stone-Weierstrass theorem
18 Proof of the Stone-Weierstrass theorem
18.1 Proof of Stones theorem
19 The Ascoli-Arzela theorem
19.1 Precompact subsets of C(E)
Problems and Complements
V The LP(E) Spaces
1 Functions in Lp(E) and their norms
1.1 The spaces LP for 0 < p < 1
1.2 The spaces Lq for q < 0
2 The HOlder and Minkowski inequalities
3 The reverse Holder and Minkowski inequalities
4 More on the spaces Lp and their norms
4.1 Characterizing the norm fp for 1 < p < oo
4.2 The norm II I1 for E of finite measure
4.3 The continuous version Of the Minkowski inequality
5 LP(E) for 1 < p < oo as normed spaces of equivalence classes
5.1 Lp(E) for 1 < p < as ametric topological vector space
6 A metric topology for LP(E) when 0 < p < 1
6.1 Open convex subsets of LP (E) when0 < p < 1
7 Convergence in LP(E) and completeness
8 Separating LP(E) by simple functions
Ⅵ Banach Spaces
Ⅶ Spaces of Continuous Functions,Distributions,and Weak
Ⅷ Topics on Integrable Functions of Real Variables
Ⅸ Embeddings of W1,p(E)into Lq(E)
References
Index