本書是抽象代數(shù)學(xué)的入門讀物,主要介紹一些基礎(chǔ)概念、基本方法及典型實(shí)例.本書將自然引入交換環(huán)、可換群,以及一般的環(huán)、群、模、結(jié)合與非結(jié)合代數(shù)等概念;討論交換環(huán)的局部化,多項(xiàng)式子環(huán)與擴(kuò)環(huán)的形式化,以及模的張量積等方法;建立域擴(kuò)張的基本理論,討論有限群的子群結(jié)構(gòu),并用于證明代數(shù)基本定理;介紹模的范疇與函子的初步語(yǔ)言,并描述投
矩陣半張量積是近二十年發(fā)展起來(lái)的一種新的矩陣?yán)碚。?jīng)典矩陣?yán)碚摰?*弱點(diǎn)是其維數(shù)局限,這極大地限制了矩陣方法的應(yīng)用。矩陣半張量積是經(jīng)典矩陣?yán)碚摰陌l(fā)展,它克服了經(jīng)典矩陣?yán)碚搶?duì)維數(shù)的限制,因此,被稱為跨越維數(shù)的矩陣?yán)碚!毒仃嚢霃埩糠e講義》的目的是對(duì)矩陣半張量積理論與應(yīng)用做一個(gè)基礎(chǔ)而全面的介紹。計(jì)劃出五卷。卷一:基本理論與
離散數(shù)學(xué)課程是一門重要的專業(yè)基礎(chǔ)課,在計(jì)算機(jī)類專業(yè)教學(xué)體系中起著重要的基礎(chǔ)理論支撐作用。本書對(duì)計(jì)算機(jī)類專業(yè)在本科階段最需要學(xué)習(xí)的離散數(shù)學(xué)基礎(chǔ)知識(shí)做了系統(tǒng)地介紹,力求概念清晰,注重實(shí)際應(yīng)用。全書共分七章,內(nèi)容包括命題邏輯、謂詞邏輯、集合、關(guān)系、圖、樹和代數(shù)結(jié)構(gòu),并含有較多的與計(jì)算機(jī)類專業(yè)有關(guān)的例題和習(xí)題。 本書敘述簡(jiǎn)潔
《線性代數(shù)(第二版)》內(nèi)容包括行列式、矩陣及其運(yùn)算、矩陣的初等變換與線性方程組、向量組及其相關(guān)性、相似矩陣及二次型、線性空間與線性變換、MATLAB簡(jiǎn)介及綜合應(yīng)用,前章均配有基于MATLAB的數(shù)學(xué)實(shí)驗(yàn)和習(xí)題,書末附有習(xí)題答案.第1至5章滿足教學(xué)的基本要求,第6章是選學(xué)內(nèi)容,供數(shù)學(xué)要求較高的專業(yè)選用,第7章是MATLAB
本書是根據(jù)近世代數(shù)教學(xué)大綱的要求編寫的.全書分為4章:第1章講基本概念,它是后面各章的基礎(chǔ);第2章介紹群的基本理論;第3章介紹環(huán)的基本理論;第4章專門講整環(huán)里的因子分解.這次再版在總體框架不變的前提下對(duì)個(gè)別地方的表述作了修改,使其更加嚴(yán)謹(jǐn)通俗,同時(shí)增加了一些習(xí)題,以利于讀者能更深入地理解近世代數(shù)的理論與思維方法.
完美數(shù)和斐波那契序列是兩個(gè)著名的數(shù)論問題和研究對(duì)象,兩者都有著非常悠久的歷史。本書介紹了它們的發(fā)展史和現(xiàn)當(dāng)代研究進(jìn)展,包括作者、他的團(tuán)隊(duì)和同代人的研究成果。特別地,作者提出了平方完美數(shù)問題,并首次揭示了古老的完美數(shù)問題與日世紀(jì)的斐波那契序列中的素?cái)?shù)對(duì)之間的聯(lián)系,這與18世紀(jì)瑞士大數(shù)學(xué)家歐拉將完美數(shù)問題與17世紀(jì)的梅森素
本書主要介紹圖矩陣的理論和應(yīng)用這一領(lǐng)域的若干研究專題,整理了圖矩陣的基本性質(zhì)和一些經(jīng)典結(jié)果,同時(shí)也包括了同行專家和作者近年來(lái)的一些研究成果和進(jìn)展。全書共9章,介紹了矩陣論基礎(chǔ)知識(shí)、圖的鄰接矩陣和拉普拉斯矩陣的基本理論及其應(yīng)用、圖的星集與線星集、圖的譜刻畫、圖的生成樹計(jì)數(shù)、圖的電阻距離、圖的狀態(tài)轉(zhuǎn)移以及圖矩陣與網(wǎng)絡(luò)中心性
本書是在作者原有高等代數(shù)講義的基礎(chǔ)上,充分借鑒國(guó)內(nèi)外高校常用“高等代數(shù)”和“線性代數(shù)”教材的優(yōu)點(diǎn),順應(yīng)南京大學(xué)本科教育“三三制”人才培養(yǎng)體系的要求,為綜合性大學(xué)本科生編寫的一本“高等代數(shù)”教材。書中內(nèi)容包括整數(shù)與多項(xiàng)式、行列式與矩陣、線性方程組、線性空間、線性映射、λ-矩陣、二次型、內(nèi)積空間、雙線性函數(shù)。相關(guān)內(nèi)容的選擇
《高等代數(shù)》內(nèi)容主要包括一元多項(xiàng)式理論、矩陣及其運(yùn)算、線性方程組理論、線性空間及其線性變換、相似不變量與相似標(biāo)準(zhǔn)形、歐氏空間與二次型理論。《高等代數(shù)》力求厘清高等代數(shù)相關(guān)概念與定理產(chǎn)生的歷史背景和科學(xué)動(dòng)機(jī),強(qiáng)調(diào)幾何直觀與代數(shù)方法的有機(jī)結(jié)合,使抽象概念、理論可視化,并適當(dāng)拓展高等代數(shù)理論在現(xiàn)代科技、工程、經(jīng)濟(jì)等領(lǐng)域應(yīng)用的
《高等代數(shù)》共九章,內(nèi)容包括:行列式、矩陣、線性方程組、多項(xiàng)式、線性空間、線性變換、相似標(biāo)準(zhǔn)形、二次型、內(nèi)積空間及其線性變換。《高等代數(shù)》性重讀者的邏輯推理能力,論證嚴(yán)謹(jǐn)而簡(jiǎn)明《高等代數(shù)》內(nèi)容由淺入深,條理清楚。在介紹抽象的數(shù)學(xué)概念時(shí)注重其來(lái)源和概念間的內(nèi)在聯(lián)系,《高等代數(shù)》有大量精邊的例題為教師教學(xué)所用,還有大量的習(xí)