本書(shū)采用學(xué)生易于接受的知識(shí)結(jié)構(gòu)方式和英語(yǔ)表述方式,科學(xué)、系統(tǒng)地介紹了概率論與數(shù)理統(tǒng)計(jì)中隨機(jī)事件與概率、古典概率的計(jì)算、一維隨機(jī)變量及概率分布、二維隨機(jī)變量及其分布、隨機(jī)變量的數(shù)字特征、大數(shù)定律和中心極限定理、樣本及抽樣分布、參數(shù)估計(jì)等知識(shí)。強(qiáng)調(diào)通用性和適用性,兼顧先進(jìn)性。本書(shū)起點(diǎn)低,難度坡度適中,語(yǔ)言簡(jiǎn)潔明了,不僅適用于課堂教學(xué)使用,同時(shí)也適用于自學(xué)自習(xí)。全書(shū)有關(guān)鍵詞索引,習(xí)題按小節(jié)配置,題量適中,題型全面,書(shū)后附有答案。
本書(shū)讀者對(duì)象為高等院校理工、財(cái)經(jīng)、醫(yī)藥、農(nóng)林等專業(yè)大學(xué)生和教師,特別適合作為中外合作辦學(xué)的國(guó)際教育班的學(xué)生以及準(zhǔn)備出國(guó)留學(xué)深造學(xué)子的參考書(shū)。
本書(shū)可以作為大學(xué)數(shù)學(xué)概率論與數(shù)理統(tǒng)計(jì)雙語(yǔ)或英語(yǔ)教學(xué)教師和準(zhǔn)備出國(guó)留學(xué)深造學(xué)子的參考書(shū)。特別適合中外合作辦學(xué)的國(guó)際教育班的學(xué)生,能幫助他們較快地適應(yīng)全英文的學(xué)習(xí)內(nèi)容和教學(xué)環(huán)境,完成與國(guó)外大學(xué)學(xué)習(xí)的銜接。本書(shū)在定稿之前已在多個(gè)學(xué)校作為校本教材試用,而且得到了師生的好評(píng)。
Probability and statistics is a basic course of statistical regularity of random phenomena,which focuses on the interpretations,methods and theories in probability and statistics as well as presenting the specific application in all fields according to their characteristics.
Ideas and concepts are shown in this textbook with plenty of examples in order to make the course structure easier to understand.
You are supposed to comprehend and understand the basic concepts of probability and mathematical statistics somehow by reading this book,knowing how to deal with random experiments as well.It also trains readers to use the methods to analyze and solve actual problems,and lays a solid basis of statistics for the future study of other related advanced courses.
毛綱源,武漢理工大學(xué)資深教授,畢業(yè)于武漢大學(xué),留校任教,后調(diào)入武漢工業(yè)大學(xué)(現(xiàn)合并為武漢理工大學(xué))擔(dān)任數(shù)學(xué)物理系系主任,在高校從事數(shù)學(xué)教學(xué)與科研工作40余年,除了出版多部專著(早在1998年,世界科技出版公司W(wǎng)orld Scientific Publishing Company就出版過(guò)他主編的線性代數(shù)Linear Algebra的英文教材)和發(fā)表數(shù)十篇專業(yè)論文外,還發(fā)表10余篇考研數(shù)學(xué)論文。
主講微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等課程。理論功底深厚,教學(xué)經(jīng)驗(yàn)豐富,思維獨(dú)特。曾多次受邀在各地主講考研數(shù)學(xué),得到學(xué)員的廣泛認(rèn)可和一致好評(píng):“知識(shí)淵博,講解深入淺出,易于接受”“解題方法靈活,技巧獨(dú)特,輔導(dǎo)針對(duì)性極強(qiáng)”“對(duì)考研數(shù)學(xué)的出題形式、考試重點(diǎn)難點(diǎn)了如指掌,上他的輔導(dǎo)班受益匪淺”。
徐麗莉,北京師范大學(xué)珠海分校副教授,畢業(yè)于北京師范大學(xué),美國(guó)德克薩斯理工大學(xué)統(tǒng)計(jì)學(xué)碩士。主講概率論與數(shù)理統(tǒng)計(jì)、統(tǒng)計(jì)預(yù)測(cè)決策、企業(yè)統(tǒng)計(jì)學(xué)、線性代數(shù)等課程。在國(guó)內(nèi)外權(quán)wei期刊發(fā)表中英文論文10余篇。
Chapter 1 Introduction to Probability(1)
1.1 Sets and Set Operations(1)
1.2 Random Experiments(5)
1.3 Sample Space(6)
1.4 Events (Random Events)(8)
1.4.1 The concept of events (random events)(8)
1.4.2 Relations among events(10)
1.4.3 Operations of events(10)
1.5 Relative Frequency(14)
Exercise 1(15)
Chapter 2 Finite Sample Spaces(17)
2.1 Classical Probability Model(17)
2.1.1 Finite sample spaces(17)
2.1.2 Equally likely outcomes(19)
2.1.3 Classical probability model or equally likely probability model(20)
2.1.4 Counting methods(21)
2.2 Basic Properties of Probability(30)
Exercise 2(35)
Chapter 3 Conditional Probability and Independence(37)
3.1 Conditional Probability(37)
3.2 Product Rule (Multiplication Rule)(39)
3.3 Total Probability Law(41)
3.4 Bayes’Theorem(44)
3.5 Independent Events(46)
3.5.1 Independence of two events(46)
3.5.2 Independence of several events(49)
Exercise 3(51)
Chapter 4 Random Variables and Distributions(54)
4.1 Definition of Random Variable(54)
4.2 Discrete Random Variable(56)
4.2.1 Probability distribution of discrete random variables(56)
4.2.2 Some commonly used discrete probability distributions(59)
4.3 Cumulative Distribution Function(66)
4.3.1 Finding the cumulative distribution function of discrete variable(66)
4.3.2 Determining probability by the distribution function(68)
4.3.3 Finding the probability function of a random variable with cumulative distribution function(70)
4.4 Continuous Random Variable(70)
4.4.1 Continuous random variable and probability density function(70)
4.4.2 Some continuous probability distributions(73)
4.5 Finding the Distribution of Random Variable Function(81)
4.5.1 Finding the probability distribution of discrete random variable function(81)
4.5.2 Finding the p.d.f. of the function Y=g(X),where y=g(x) is continuous monotonic function(82)
4.5.3 Finding the p.d.f. of the function Y=g(X) where X is a continuous random variable(86)
4.5.4 Finding the distribution of the function Y=g(X) where X is a continuous random variable(87)
Exercise 4(88)
Chapter 5 Two-dimensional Random Variable(91)
5.1 Concept of Joint Probability Distribution(91)
5.1.1 Joint probability distribution for two discrete random variables(91)
5.1.2 Marginal distribution of discrete random variable(93)
5.1.3 Joint probability distribution function for two continuous random variables(98)
5.1.4 Marginal probability density function and conditional probability density(100)
5.1.5 The joint p.d.f. for two random variables(101)
5.2 Conditional Distribution(104)
5.3 Two Commonly Useful Distributions(108)
5.3.1 Two-dimensional uniform distribution(108)
5.3.2 Bivariate normal distribution(109)
5.4 Independence of Two Random Variables(110)
Exercise 5(115)
Chapter 6 Numerical Characteristics of Random Variables(118)
6.1 Expectation of Random Variable(118)
6.1.1 Expectation of discrete distribution(118)
6.1.2 Expectation of continuous random variable(119)
6.1.3 The expectation of function(120)
6.1.4 Properties of expectation(123)
6.2Variance of Random Variable(124)
6.2.1 Definition of the variance and the standard deviation(124)
6.2.2 Properties of the variance of random variable(127)
6.2.3 The expectation and variance of special probability distribution(129)
6.3 Covariance and Correlation(132)
6.3.1 Covariance(132)
6.3.2 Correlation coefficient(134)
6.4 Moments and Covariance Matrix(137)
Exercise 6(138)
Chapter 7 Law of Large Number and Central Limit Theorem(140)
7.1 Chebyshev’s Inequality(140)
7.2 Law of Large Number(142)
7.3 Central Limit Theorem(144)
Exercise 7(147)
Chapter 8 Basic Concept in Mathematical Statistics Introduction(148)
8.1 Random Sampling(148)
8.1.1 Population and sample(148)
8.1.2 Random sample(149)
8.1.3 Distribution of random sample(150)
8.2 Statistics(154)
8.3 Sampling Distribution(157)
8.3.1 The chi-square distribution(157)
8.3.2 The t-distribution(160)
8.3.3 The F-distribution(162)
8.4 Sampling Distribution Related to Sample Mean or (and) Sample Variance from Normal Population(165)
8.4.1 Sampling distribution related to sample mean or (and) sample variance from one normal population(165)
8.4.2 Sampling distribution related to sample mean of (and) sample variance from two normal populations(166)
Exercise 8(168)
Chapter 9 Parameter Estimation(171)
9.1 Point Estimation(171)
9.2 The Particular Properties of Estimators(172)
9.2.1 Unbiasedness(172)
9.2.2 Validity(173)
9.2.3 Consistency(175)
9.3 Moment Estimation and Maximum Likelihood Estimation(176)
9.3.1 Moment estimation(176)
9.3.2 Maximum likelihood estimation(177)
9.4 Interval Estimation of Mean and Variance for Normal Population(182)
9.4.1 The case for a single normal population(182)
9.4.2 The case for two populations N(μ1,σ21),N(μ2,σ22)(188)
Exercise 9(191)
Chapter 10 Hypothesis Testing(195)
10.1 General Concepts Used in Hypothesis Testing(195)
10.1.1 Statistical hypothesis(195)
10.1.2 Two types of errors(197)
10.1.3 Testing a statistical hypothesis(198)
10.2 Hypothesis Test for a Single Normal Population Parameter(201)
10.2.1 Hypothesis test for mean μ of a single normal population(201)
10.2.2 Hypothesis test for variance(205)
10.3 Hypothesis Test of Two Normal Population Parameters(208)
10.3.1 Hypothesis test for a difference between two normal populations(208)
10.3.2 Hypothesis test for two normal population variances(212)
10.4 The Relationship between Hypothesis Testing and Confidence Interval(215)
Exercise 10(216)
Answers to Exercises(219)
Appendix A Some Important Distributions(230)
Appendix B Statistical Tables(231)
Table B-1 Poisson Distribution(231)
Table B-2 Standard Normal Distribution(233)
Table B-3 t-Distribution(235)
Table B-4 χ2-Distribution(237)
Table B-5 F-Distribution(240)